
 39

A. A short Java RMI tutorial

A.1 Java Remote Method Invocation

This is a technical literature study which purpose is to describe the basic parts of Java Remote
Method Invocation.

Remote Method Invocation, abbreviated as RMI [SUN02, p2], provides support for
distributed objects in Java, i.e. it allows objects to invoke methods on remote objects. The
calling objects can use the exact same syntax as for local invocations [CDK01, p194].

The Java RMI model has two general requirements. The first requirement is that the RMI
model shall be simple and easy to use and the second requirement it that the model shall fit
into the Java language in a natural way [SUN02 ,p2].

A.2 Distributed Object Application

An RMI application is often composed of two separate programs, a server and a client
[SUN02 ,p3]. The server creates remotes objects and makes references to those objects
accessible. Then it waits for clients to invoke methods on the objects. The client gets remote
references to remote objects in the server and invokes methods on those remote objects.

The RMI model provides an distributed object application to the programmer [SUN02 ,p3]. It
is a mechanism that the server and the client use to communicate and pass information
between each other. A distributed object application has to handle the following properties:

• Locate remote objects: The system has to obtain references to remote objects. This
can be done i two ways. Either by using RMI’s naming facility, the rmiregistry, or by
passing and returning remote objects.

• Communicate with remote objects: The programmer doesn’ t have to handle
communication between the remote objects since this is handled by the RMI system.
The remote communication looks like an ordinary method invocation for the
programmer.

• Load class bytecodes for objects that are passed as parameters or return values:
All mechanisms for loading an object’s code and transmitting data is provided by the
RMI system.

 40

Figure A-1, below, illustrates an RMI distributed application. In this example the RMI
registry is used to obtain references to a remote object. First the server associates a name with
a remote object in the RMI registry (see note 1 in figure A-1). When a client wants access to a
remote object it looks up the object, by its name, in the registry (see note 2 in figure A-1).
Then the client can invoke methods on the remote object (see note 3 in figure A-1) at the
server.

Figure A-1. An Illustration of a distributed object application.

A.3 Interfaces and Classes

Since Java RMI is a single-language system, the programming of distributed application in
RMI is rather simple [CDK01, p194]. All interfaces and classes for the RMI system are
defined in the java.rmi package [SUN02 ,p6]. Figure A-2, below, illustrates the relationship
between some of the classes and interfaces. The RemoteObject class implements the Remote
interface while the other classes extend RemoteObject.

Figure A-2. Interfaces and Classes in the java.rmi package.

Client

Server

RMI Registry

1

2

3

Remote

Interface

RemoteObject

Classes

RemoteServer

Activatable UnicastRemoteObject

 41

A.3.1 The Remote Interface

A remote interface is defined by extending the Remote interface that is provided in the
java.rmi package. The remote interface is the interface that declares methods that clients can
invoke from a remote virtual machine [SUN02 ,p6]. The remote interface must satisfy the
following conditions:

• It must extend the interface Remote.
• Each remote method declaration in the remote interface must include the exception

RemoteException (or one of it’s superclasses) in it’s thrown clause.

A.3.2 The RemoteObject Class

RMI server functions are provided by the class RemoteObject and its subclasses
RemoteServer, UnicastRemoteObject and Activatable. Here is a short description of what the
diffrent classes handle:

• RemoteObject provides implementations of the methods hashCode, equals and
toString in the class java.lang.Object.

• The classes UnicastRemoteObject and Activatable create remote objects and export
them, i.e. the classes make the remote objects available to remote clients.

A.3.3 The RemoteException Class

The class RemoteException is a superclass of the exceptions that the RMI system throws
during a remote method invocation [SUN02 ,p6]. Each remote method that is declared in a
remote interface must specify RemoteException (or one of it’s superclasses) in it’s throws
clause to ensure the robustness of applications in the RMI system.

When a remote method invocation fails, the exception RemoteException is thrown.
Communication failure, protocol errors and failure during marshalling or unmarshalling of
parameters or return values are some reasons for RMI failure.

RemoteException is an exception that must be handled by the caller of the remote method, i.e.
it is a checked exception. The compiler ensures that the programmer have handled these
exceptions.

 42

A.4 Implementation of a simple RMI system

This is a simple RMI system with a client and a server. The server contains one method
(helloWorld) that returns a string to the client.

To build the RMI system all files has to be compiled. Then the stub and the skeleton, which
are standard mechanisms communication with remote objects, are created with the rmic
compiler [SUN02 ,p16].

This RMI system contains the following files (the files are shown below):

• HelloWorld.java: The remote interface.
• HelloWorldClient.java: The client application in the RMI system.
• HelloWorldServer.java: The server application in the RMI system.

When all files are compiled, performing the following command will create the stud and the
skeleton:

 rmic HelloWorldServer

Then the two classes will be created, HelloWorldServer_Stub.class and
HelloWorldServer_Skel.class, where the first class represents the client side of the RMI
system and the second file represents the server side of the RMI system.

HelloWorld.java

/ *
 Fi l ename: Hel l oWor l d. j ava
* /

i mpor t j ava. r mi . Remot e;
i mpor t j ava. r mi . Remot eExcept i on;

/ *
 Cl assname: Hel l oWor l d
 Comment : The r emot e i nt er f ace.
* /
publ i c i nt er f ace Hel l oWor l d ext ends Remot e {
 St r i ng hel l oWor l d() t hr ows Remot eExcept i on;
}

 43

HelloWorldClient.java

/ *
 Fi l ename: Hel l oWor l dCl i ent . j ava
* /

i mpor t j ava. r mi . Nami ng;
i mpor t j ava. r mi . Remot eExcept i on;

/ *
 Cl assname: Hel l oWor l dCl i ent
 Comment : The RMI c l i ent .
* /
publ i c c l ass Hel l oWor l dCl i ent {

 s t at i c St r i ng message = " bl ank" ;

 / / The Hel l oWor l d obj ect " obj " i s t he i dent i f i er t hat i s
 / / used t o r ef er t o t he r emot e obj ect t hat i mpl ement s
 / / t he Hel l oWor l d i nt er f ace.

 s t at i c Hel l oWor l d obj = nul l ;

 publ i c st at i c voi d mai n(St r i ng ar gs[])
 {
 t r y {
 obj = (Hel l oWor l d) Nami ng. l ookup(" / / "

+ " kvi st . cs. umu. se"
+ " / Hel l oWor l d") ;

message = obj . hel l oWor l d() ;

 Syst em. out . pr i nt l n(" Message f r om t he RMI - ser ver was: \ " "
 + message + " \ " ") ;
 }

 cat ch (Except i on e) {
 Syst em. out . pr i nt l n(" Hel l oWor l dCl i ent except i on: "
 + e. get Message()) ;
 e. pr i nt St ackTr ace() ;
 }
 }
}

 44

HelloWorldServer.java

/ *
 Fi l ename: Hel l oWor l dSer ver . j ava
* /

i mpor t j ava. r mi . Nami ng;
i mpor t j ava. r mi . Remot eExcept i on;
i mpor t j ava. r mi . RMI Secur i t yManager ;
i mpor t j ava. r mi . ser ver . Uni cast Remot eObj ect ;

/ *
 Cl assname: Hel l oWor l dSer ver
 Pur pose: The RMI ser ver .
* /
publ i c c l ass Hel l oWor l dSer ver ext ends Uni cast Remot eObj ect
 i mpl ement s Hel l oWor l d {

 publ i c Hel l oWor l dSer ver () t hr ows Remot eExcept i on {
 super () ;
 }

 publ i c St r i ng hel l oWor l d() {
 Syst em. out . pr i nt l n(" I nvocat i on t o hel l oWor l d was succesf ul ! ") ;
 r et ur n " Hel l o Wor l d f r om RMI ser ver ! " ;
 }

 publ i c st at i c voi d mai n(St r i ng ar gs[]) {

 t r y {
 / / Cr eat e an obj ect of t he Hel l oWor l dSer ver c l ass.

Hel l oWor l dSer ver obj = new Hel l oWor l dSer ver () ;

/ / Bi nd t hi s obj ect i nst ance t o t he name " Hel l oSer ver " .
 Nami ng. r ebi nd(" Hel l oWor l d" , obj) ;

Syst em. out . pr i nt l n(" Hel l oWor l d bound i n r egi st r y") ;
 }

 cat ch (Except i on e) {

Syst em. out . pr i nt l n(" Hel l oWor l dSer ver er r or : " + e. get Message()) ;
 e. pr i nt St ackTr ace() ;
 }
 }
}

 45

B. A short PostgreSQL tutorial

B.1 PostgreSQL

PostgreSQL is an open source project that has been developed in various forms since 1977. It
is considered to be the most advanced open source database system in the world since it
provides many features that are traditionally seen only in enterprise-caliber commercial
products [WJD02, p3].

PostgreSQL is an Object-Relational Database Management System (ORDBMS), which is an
extension to the Relational Database Management System (RDBMS). A user can store,
related pieces of data, in a two-dimensional data structure called tables. The data in the table
may consist of many different types of data, e.g. integers, floating point numbers and strings
[WJD02, p35].

A table is composed of columns and rows. The intersection between a column and a row is
called a field. A column, within a table, describes the name and the type of the data that will
be found in a row for that column’s field. A row, within a table, represents a record that is
composed of fields that are described by their corresponding column’s name and type
[WJD02, p35]. Table B-1, below, gives an example of a SQL table for a telephone directory.

id first_name last_name telephone_number
 254 John Worsley 090-123456
 34 Joshua Drake 0920-12345
 1354 Patrik Andersson 0978-56789
 3006 George Baker 031-112233
 891 Tony Adams 08-12345678
 99 William Ross 018-1234567

Table B-1. An example of an SQL table.

B.2 SQL Statements

An SQL statement begins with a command. The command is a word or a group of words that
describes what action the statement will initiate. Table B-2, below, describes some basic SQL
commands [WJD02, p39].

 46

Command Description

CREATE DATABASE
Creates a new database (this command is used by
the administrator of the system)

DROP DATABASE
Destroys an existing database (this command is
used by the administrator of the system).

CREATE TABLE Create a table in an existing database.
DROP TABLE Destroys an existing table.
SELECT Retrieves records from a table.
INSERT Adds records into a table.
UPDATE Modifies the data in existing table records.
DELETE Removes existing records from a table

Table B-2. Some fundamental PostgreSQL commands.

The command, in an SQL statement, can be called verb of the statement, since it always
describes the action to be taken. A statement also consists of one or more clauses, which
describes the function of the SQL statement.

When SQL was designed, the ease of use and readability was an important aspect of the
design. Because of the readability aspect, SQL statements have a strong resemblance to
simple English sentences. When you are reading a well-designed SQL query it should be
almost as easy as reading an ordinary sentence.

B.3 Using JDBC to communicate with PostgreSQL

Java Database Connectivity, abbreviated as JDBC, is a set of classes and methods that covers
all the interaction you can have with a standard SQL database. Using JDBC with Java is a
simple and portable way of interacting with different types of databases [WJD02, p433].

B.3.1 JDBC Driver

The driver that PostgreSQL provides is a so-called Type 4 driver. This means that the driver is
written in pure Java. Since the driver is written in pure Java, it can be taken anywhere and be
used anywhere as long as the platform has TCP/IP capabilities (because the driver only
connects with TCP/IP). A precompiled version of the driver can be downloaded from
PostgreSQL JDBC web site1 [WJD02, p434].

B.3.2 Registration of the driver

To be able to use the driver, you have to ensure that the driver gets registered in your code.
The method Class.forName finds a class by its name. If the class is found, the loader will read
in the binary description of the class.

1 http://jdbc.postgresql.org/

 47

Then the Driver class registers itself, with the DriverManager class, when it passes through
the Java class loader. When the register is done JDBC will know what driver to use when
connecting to a specific database [WJD02, p435].

B.3.3 Connecting to a database

When the Driver class is registered, you can request a connection to a PostgreSQL database.
The class DriverManager is used to set up a connection. This class is responsible for handling
JDBC URL’s, finding the appropriate driver, and using that driver to set up a connection to
the database [WJD02, p435].

The JDBC URL, which shall be used, when connecting to a database has the following
format:

jdbc:[drivertype]:[database]

The first part of the URL, jdbc, is a constant that indicates that this connection is a connection
to a JDBC data source. The drivertype indicates which kind of database you want to connect
to, in this case postgresql. The last part, of the URL, is the database. This part is passed off to
the driver, which finds the database.

B.3.4 Basic JDBC usage

The Connection, Statement and ResultSet classes represent some of the basic interaction,
which programmers ask for, with SQL. A Connection object represents a physical connection
to a database. The Connection object can be used to create a Statement object, which is
JDBC’s way of getting SQL statements to the database [WJD02, p438].

The ResultSet class is the primary interface for fetching information from the database. These
objects are returned from SQL statements the have been executed. A ResultSet object can step
through the rows returned and it can return the value of a specific column in a row.

The Statement class has two important methods, executeQuery and executeUpdate. The
executeQuery method takes the SQL statement, which shall be executed, as argument and
returns a ResultSet object. It is used when executing queries that will return a set of data, e.g.
a SELECT statement. The executeUpdate method also takes the SQL statement, which shall
be executed, as argument. The different between these two methods is that executeUpdate is
for executing statements that change the data in the database, e.g. CREATE, INSERT or
UPDATE statements. It returns an int that corresponds to the number of records that were
modified.

 48

B.3.5 A simple JDBC application

This is a simple JDBC application that creates a telephone book and adds some element (i.e.
some persons) to the table. Then it fetches the elements from the tables and prints them on the
screen. At least the table is dropped from the database.

This application contains only one file, DatabaseTest.java, which is shown below. To be able
to test this application, you must have a postgresql database installed on your system.

DatabaseTest.java

/ *
 Fi l ename: Dat abaseTest . j ava
* /

i mpor t j ava. sql . * ;

/ *
 Cl assname: Dat abaseTest
 Comment : A t est appl i cat i on t hat uses JDBC t o access t he Post gr eSQL
ser ver .
* /
publ i c c l ass Dat abaseTest {

 publ i c st at i c voi d mai n(St r i ng ar gs[])
 {
 i nt el ement =1;

 t r y {

 / / Loadi ng t he Dr i ver
 t r y{
 Cl ass. f or Name(" or g. post gr esql . Dr i ver ") ;
 } cat ch(Cl assNot FoundExcept i on cnf e) {
 Syst em. er r . pr i nt l n(" Coul dn' t f i nd dr i ver c l ass: ") ;
 cnf e. pr i nt St ackTr ace() ;
 }

 / / Get a connect i on t o t he Post gr eSQL dat abase.
 Connect i on db = Dr i ver Manager . get Connect i on

(" j dbc: post gr esql : / / post gr es. cs. umu. se/ ei 97pva" , " ei 97pva" ,
nul l) ;

Syst em. out . pr i nt l n(" The connect i on t o t he dat abase was
succesf ul l y opened. ") ;

 / / Get a St at ement i nst ance.
 St at ement st = db. cr eat eSt at ement () ;

 / / Cr eat e a t abl e named t el ephonebook
 s t . execut eUpdat e

(" CREATE TABLE t el ephonebook (f i r s t var char (30) , l ast
var char (30) , number var char (20)) ; ") ;

 49

 / / I nser t some el ement s i n t he dat abase
 s t . execut eUpdat e

(" I NSERT I NTO t el ephonebook VALUES (' Johan' , ' Johansson' , ' 090-
123456') ; ") ;

s t . execut eUpdat e
(" I NSERT I NTO t el ephonebook VALUES (' Sven' , ' Svensson' , ' 090-
654321') ; ") ;

s t . execut eUpdat e
(" I NSERT I NTO t el ephonebook VALUES (' Ander s ' , ' Ander sson' ,
' 090- 456789') ; ") ;

s t . execut eUpdat e
(" I NSERT I NTO t el ephonebook VALUES (' Per ' , ' Per sson' , ' 090-
987654') ; ") ;

/ / Execut e a quer y t o get al l el ement s i n t he t abl e.

 Resul t Set r s = st . execut eQuer y(" SELECT * FROM t el ephonebook") ;

 / / Pr i nt out al l el ement s i n t he t abl e named t el ephonebook.
 whi l e(r s. next ()) {

 Syst em. out . pr i nt (" El ement " + el ement + " : ") ;
 Syst em. out . pr i nt (r s. get St r i ng(1)) ;
 Syst em. out . pr i nt (" ") ;
 Syst em. out . pr i nt (r s. get St r i ng(2)) ;
 Syst em. out . pr i nt (" : ") ;
 Syst em. out . pr i nt l n(r s. get St r i ng(3)) ;

 el ement =el ement +1;
 }

 / / Dr op t he t abl e named t el ephonebook.
 s t . execut e(" DROP TABLE t el ephonebook") ;

 / / Cl ose t he Resul t Set and t he St at ement var i abl es and c l ose
 / / t he connect i on t o t he dat abase.
 r s . c l ose() ;
 s t . c l ose() ;
 db. c l ose() ;

 Syst em. out . pr i nt l n(" Cl osed connect i on t o t he dat abase. ") ;
 }

 cat ch (Except i on e) {
 Syst em. out . pr i nt l n(" Dat abaseTest except i on: "
 + e. get Message()) ;
 e. pr i nt St ackTr ace() ;
 }

 }
}

 50

 51

C. Sequence Diagrams

Figure C-1. The bookmaker updates user information.

Figure C-2. The bookmaker view bet logs.

Figure C-3. A client logs on and updates its user information.

Database BookMaker

login(bookmaker)

DB Server

SELECT 2

SELECT 3

UPDATE
logout(bookmaker)

getUserList()

SELECT 1

getUser(’user’)

updateUser(’user’,info)

Database BookMaker

login(bookmaker)

DB Server

SELECT 2

SELECT 3

SELECT 4

SELECT 5

SELECT 6

SELECT 7

SELECT 8

logout(bookmaker)

Bet 1

Bet 2

Bet 3

getBetLog(’user’)

SELECT 1

Client

clientLogin(’user’)

BetServer DB Server Database

UPDATE

SELECT 1
login(’user’)

SELECT 2
getUserInfo(’user’)

getUserInfo(’user’)

updateUserInfo(’user’)
updateUserInfo(’user’)

clientLogout(’user’)

 52

Figure C-4. A simulation of a football match.

F
oo

tb
al

lM
at

ch

fo
ot

ba
llL

og
in

(’u
se

r’)
 C
lie

nt

B
et

S
er

ve
r

S

yn
ch

D

B
 S

er
ve

r
D

at
ab

as
e

B
et

S
er

ve
r

 R

M
I

S
E

LE
C

T
 2

S
E

LE
C

T
 3

S
E

LE
C

T
 4

S
E

LE
C

T
 1

lo

gi
n(

’u
se

r’)

ge
tT

ea
m

s(
’u

se
r’)

ge

tT
ea

m
s(

’u
se

r’)

st
ar

tH
al

f(
’u

se
r’,

 1
)

st
ar

tM
at

ch
(’u

se
r’)

U
P

D
A

T
E

 1

en
dH

al
f(

’u
se

r’,
 1

)

st
ar

tH
al

f(
’u

se
r’,

 2
)

ne
w

B
et

(’u
se

r’,
 b

et
)

st
ar

tB
et

(b
et

)
IN

S
E

R
T

 1

st
ar

tB
et

(b
et

K
ey

)

ne
w

B
et

(b
et

)

en
te

r(
’u

se
r’)

re
pl

y(
be

tK
ey

)

pl
ac

eB
et

(b
et

)
ch

ec
kB

et
(b

et
)

IN
S

E
R

T
 2

U
P

D
A

T
E

 2

U
P

D
A

T
E

 3

U
P

D
A

T
E

 4

S
E

LE
C

T
 4

go
al

(’u
se

r’,
 te

am
)

be
tO

ut
C

om
e(

ou
tc

om
e)

sa

ve
B

et
(b

et
)

en
dB

et
()

en
dH

al
f(

’u
se

r’,
 2

)
st

op
M

at
ch

(’u
se

r’)

fo
ot

ba
llL

og
in

(’u
se

r’)

 53

D. Screenshots over the GUI’s

Figure D-1. The User pane in the Bookmaker GUI.

Figure D-2. The Match pane in the Bookmaker GUI.

 54

Figure D-3. First half of the bet log table in the Bookmaker GUI.

Figure D-4. Second half of the bet log table in the Bookmaker GUI.

 55

Figure D-5. Screenshot over the client applet GUI.

 56

Figure D-6. Screenshot over the football match GUI.

 57

E. The Evaluation Questionnaire

Evaluation Questionnaire

This is an evaluation questionnaire which primary purpose is to determine if this thesis has
managed to present the concept behind rapid betting. A secondary purpose is to determine if
rapid betting is an interesting form of betting.

1. Rate your sports interest (1-5): ……

2. Which sports are you most interested in? ……………………………………..
 ……………………………………..

3. How often do you use to bet? Often …. Sometimes …. Never ….

4. What do you use to bet on? Dogs ………
 Harness Racing ………
 Ice hockey ………
 Football ………
 Floor ball ….…..
 Bandy ………
 Handball ………
 Volleyball ………

 Other sports …………………………..

5. Do you use to bet in your local kiosk? Yes ….. No ……

6. Do you know any of these betting addresses on the Internet?

 www.atg.se …….
 www.betandwin.com …….
 www.centrebet.com …….
 www.expekt.com …….
 www.ladbrokes.com …….
 www.svenskaspel.se …….
 www.unibet.com …….

 Other web sites ……………………….

7. Do you use to be on any of these sites?

…………………………………………………………………………………………

 58

8. Do you understand the concepts behind rapid betting?

…………………………………………………….……………………………
………………………………………………………………………………….

9. Would you use a system for rapid betting (i.e. on your mobile device)?

…………………………………………………….……………………………
………………………………………………………………………………….

10. Other comments

…………………………………………………….……………………………
………………………………………………………………………………….

 59

