A. A short Java RMI tutorial

A.1 Java Remote Method Invocation

Thisisatechnical literature study which purpose is to describe the basic parts of Java Remote
Method Invocation.

Remote Method Invocation, abbreviated as RMI [SUNO2, p2], provides support for
distributed objectsin Java, i.e. it allows objects to invoke methods on remote objects. The
calling objects can use the exact same syntax as for local invocations [CDKO01, p194].

The Java RMI model has two general requirements. The first requirement is that the RM|
model shall be simple and easy to use and the second requirement it that the model shall fit
into the Java language in a natural way [SUNO2 ,p2].

A.2 Distributed Object Application

An RMI application is often composed of two separate programs, a server and a client
[SUNO2 ,p3]. The server creates remotes objects and makes references to those objects
accessible. Then it waits for clients to invoke methods on the objects. The client gets remote
references to remote objects in the server and invokes methods on those remote objects.

The RMI model provides an distributed object application to the programmer [SUNO2 ,p3]. It
is amechanism that the server and the client use to communicate and pass information
between each other. A distributed object application has to handle the following properties:

» Locateremote objects. The system has to obtain references to remote objects. This
can be donei two ways. Either by using RM1I’s naming facility, the rmiregistry, or by
passing and returning remote objects.

e Communicate with remote objects. The programmer doesn’'t have to handle
communication between the remote objects since thisis handled by the RM1 system.
The remote communication looks like an ordinary method invocation for the
programmer.

* Load class bytecodesfor objectsthat are passed as parametersor return values:
All mechanisms for loading an object’s code and transmitting data is provided by the
RMI system.

39

Figure A-1, below, illustrates an RM| distributed application. In this example the RMI

registry is used to obtain references to a remote object. First the server associates a name with
aremote object in the RMI registry (see note 1 in figure A-1). When a client wants accessto a
remote object it looks up the object, by its name, in the registry (see note 2 in figure A-1).
Then the client can invoke methods on the remote object (see note 3 in figure A-1) at the

server.
/ RMI Iiegistry

1
o\‘o O

Server

Client

Figure A-1. An lllustration of adistributed object application.

A.3 Interfaces and Classes

Since Java RMI is a single-language system, the programming of distributed application in
RMI israther simple [CDKO01, p194]. All interfaces and classes for the RMI system are
defined in the java.rmi package [SUNO2 ,p6]. Figure A-2, below, illustrates the relationship
between some of the classes and interfaces. The RemoteObject class implements the Remote
interface while the other classes extend RemoteObject.

Interface Classes
Remote |-t---------- » RemoteObject
RemoteServer

N

Activatable Uni castRemoteObj ect

Figure A-2. Interfaces and Classesin the java.rmi package.

40

A.3.1 The Remote Interface

A remote interface is defined by extending the Remote interface that is provided in the
javarrmi package. The remote interface is the interface that declares methods that clients can
invoke from aremote virtual machine [SUNO2 ,p6]. The remote interface must satisfy the
following conditions:

* |t must extend the interface Remote.

» Each remote method declaration in the remote interface must include the exception
RemoteException (or one of it’s superclasses) init’'s thrown clause.

A.3.2 The RemoteObject Class

RMI server functions are provided by the class RemoteObject and its subclasses
RemoteServer, UnicastRemoteObject and Activatable. Here is a short description of what the
diffrent classes handle:

* RemoteObject provides implementations of the methods hashCode, equals and
toString in the class java.lang.Object.

* The classes UnicastRemoteObject and Activatable create remote objects and export
them, i.e. the classes make the remote objects available to remote clients.

A.3.3 The RemoteException Class

The class RemoteException is a superclass of the exceptions that the RMI system throws
during a remote method invocation [SUNO2 ,p6]. Each remote method that is declared in a
remote interface must specify RemoteException (or one of it's superclasses) in it’s throws
clause to ensure the robustness of applicationsin the RMI system.

When aremote method invocation fails, the exception RemoteException is thrown.
Communication failure, protocol errors and failure during marshalling or unmarshalling of
parameters or return values are some reasons for RMI failure.

RemoteException is an exception that must be handled by the caller of the remote method, i.e.

it is achecked exception. The compiler ensures that the programmer have handled these
exceptions.

41

A.4 Implementation of a simple RMI system

Thisisasimple RMI system with aclient and a server. The server contains one method
(helloWorld) that returns a string to the client.

To build the RMI system al files has to be compiled. Then the stub and the skeleton, which
are standard mechanisms communication with remote objects, are created with the rmic
compiler [SUNO2 ,p16].

ThisRMI system containsthe following files (the files are shown below):

» HelloWorld.java: The remote interface.
» HelloworldClient.java: The client application in the RMI system.
» HelloWorldServer.java: The server application in the RMI system.

When al files are compiled, performing the following command will create the stud and the
skeleton:

rmic HelloWorldServer

Then the two classes will be created, HelloWorldServer Sub.class and
HelloWorldServer_Skel.class, where the first class represents the client side of the RMI
system and the second file represents the server side of the RMI system.

Helloworld.java

/*
Fi |l ename: Hel |l oWworl d. | ava
*/

i mport java.rm . Renote,;
i mport java.rm . Renot eExcepti on;

/~k
Cl assnane: Hell owrld
Comment: The renote interface.
*/
public interface Hel |l owrl d extends Renote {
String hellowrld() throws RenoteException;
}

42

HelloworldClient.java

/*
Fil ename: Hel |l oWwbrl ddient.java
*/

i mport java.rmn . Nani ng;
i mport java.rm . Renot eExcepti on;

/*
Cl assnane: Hell oWorl dd i ent
Comment: The RM client.
*
/
public class HellowrldCdient {

static String nessage = "bl ank";

/1 The HelloWwrld object "obj" is the identifier that is
/1 used to refer to the renote object that inplenents

/1 the HelloWwrld interface.

static HelloWwrld obj = null;

public static void nmain(String args[])

{
try {
obj = (Hell oworl d) Nani ng. | ookup("//"
+ "kvist.cs.umnmu. se"
+ "/ Hell oWorld");
message = obj . hell oWorld();
Systemout.println("Mssage fromthe RM-server was:
+ nmessage + "\"");
}
catch (Exception e) {
Systemout.println("Hell owrl dCd ient exception:
+ e. get Message());
e.printStackTrace();
}
}

43

HelloworldServer .java

/*
Fi | enane:
*/

i mport java.
i mport java.
i mport java.
i mport java.

/*
Cl assnane
Pur pose:
*/

public class Hell owrl dServer extends Uni cast Renot eCbj ect

i mpl ene

public Hell oWworl dServer() throws RenoteException {

Hel | oWbr | dServer. j ava

rm . Nam ng;

rm . Renot eExcepti on;

rm . RM SecurityManager;

rm . server. Uni cast Renot eQbj ect ;

. Hel | oWbr | dSer ver
The RM server.

nts HelloWwbrld {

er();

String helloWorld() {

Systemout.println("Invocation to hell oWwrld was succesful!");

/1 Bind this object

sup
}
public
ret
}
public
try
}
cat
}
}

urn "Hello World fromRM server!";

static void main(String args[]) {

{

/1 Create an object of the Hell oWwrl dServer cl ass.

Hel | oWor | dServer obj = new Hel | oWbrl dServer();

Namni ng. rebi nd("Hel | owor| d", obj);

instance to the nane "Hel | oServer".

Systemout.printin("Hellowrld bound in registry");

ch (Exception e) {
System out . println("Hell owrl dServer error:
e.printStackTrace();

+ e. get Message());

B. A short PostgreSQL tutorial

B.1 PostgreSQL

PostgreSQL is an open source project that has been developed in various forms since 1977. It
is considered to be the most advanced open source database system in the world since it
provides many features that are traditionally seen only in enterprise-caliber commercial
products [WJDO02, p3].

PostgreSQL is an Object-Relational Database Management System (ORDBMS), which isan
extension to the Relational Database Management System (RDBMS). A user can store,
related pieces of data, in atwo-dimensional data structure called tables. The datain the table
may consist of many different types of data, e.g. integers, floating point numbers and strings
[WJDO02, p35].

A tableis composed of columns and rows. The intersection between acolumn and arow is
called afield. A column, within atable, describes the name and the type of the data that will
be found in arow for that column’sfield. A row, within atable, represents arecord that is
composed of fields that are described by their corresponding column’s name and type
[WJD02, p35]. Table B-1, below, gives an example of a SQL table for atelephone directory.

id |first name| last name | telephone number
254 John Worsley 090-123456
34 Joshua Drake 0920-12345
1354 | Patrik Andersson | 0978-56789
3006 | George Baker 031-112233
891 Tony Adams 08-12345678
99 William Ross 018-1234567

Table B-1. An example of an SQL table.

B.2 SQL Statements

An SQL statement begins with acommand. The command is aword or a group of words that
describes what action the statement will initiate. Table B-2, below, describes some basic SQL
commands [WJD02, p39].

45

Command Description
CREATE DATABASE Creates anew database (this command is used by
the administrator of the system)
Destroys an existing database (this command is
used by the administrator of the system).

DROP DATABASE

CREATE TABLE Create a table in an existing database.

DROP TABLE Destroys an existing table.

SELECT Retrieves records from a table.

INSERT Adds records into a table.

UPDATE Modifies the data in existing table records.
DELETE Removes existing records from a table

Table B-2. Some fundamental PostgreSQL commands.

The command, in an SQL statement, can be called verb of the statement, since it always
describes the action to be taken. A statement also consists of one or more clauses, which
describes the function of the SQL statement.

When SQL was designed, the ease of use and readability was an important aspect of the
design. Because of the readability aspect, SQL statements have a strong resemblance to
simple English sentences. When you are reading a well-designed SQL query it should be
almost as easy as reading an ordinary sentence.

B.3 Using JDBC to communicate with PostgreSQL

Java Database Connectivity, abbreviated as JDBC, is a set of classes and methods that covers
all the interaction you can have with a standard SQL database. Using JDBC with Javaisa
simple and portable way of interacting with different types of databases [WJD02, p433].

B.3.1 JDBC Driver

The driver that PostgreSQL providesis a so-called Type 4 driver. This means that the driver is
written in pure Java. Since the driver iswritten in pure Java, it can be taken anywhere and be
used anywhere as long as the platform has TCP/IP capabilities (because the driver only
connects with TCP/IP). A precompiled version of the driver can be downloaded from
PostgreSQL JDBC web site' [WJIDO02, p434].

B.3.2 Registration of the driver
To be able to use the driver, you have to ensure that the driver gets registered in your code.

The method Class.forName finds a class by its name. If the classis found, the loader will read
in the binary description of the class.

! http://jdbc.postgresql .org/

46

Then the Driver class registersitself, with the DriverManager class, when it passes through
the Java class loader. When the register is done JDBC will know what driver to use when
connecting to a specific database [WJD02, p435].

B.3.3 Connecting to a database

When the Driver classis registered, you can request a connection to a PostgreSQL database.
The class DriverManager is used to set up a connection. This classis responsible for handling
JDBC URL's, finding the appropriate driver, and using that driver to set up a connection to
the database [WJD02, p435].

The JDBC URL, which shall be used, when connecting to a database has the following
format:

jdbc:[drivertype]:[database]

Thefirst part of the URL, jdbc, is a constant that indicates that this connection is a connection
to a JDBC data source. The drivertype indicates which kind of database you want to connect
to, in this case postgresql. Thelast part, of the URL, isthe database. This part is passed off to
the driver, which finds the database.

B.3.4 Basic JDBC usage

The Connection, Statement and ResultSet classes represent some of the basic interaction,
which programmers ask for, with SQL. A Connection object represents a physical connection
to adatabase. The Connection object can be used to create a Satement object, whichis
JDBC'sway of getting SQL statements to the database [WJDO02, p438].

The ResultSet classis the primary interface for fetching information from the database. These
objects are returned from SQL statements the have been executed. A ResultSet object can step
through the rows returned and it can return the value of a specific columnin arow.

The Satement class has two important methods, executeQuery and executeUpdate. The
executeQuery method takes the SQL statement, which shall be executed, as argument and
returns a ResultSet object. It is used when executing queries that will return a set of data, e.g.
a SELECT statement. The executeUpdate method also takes the SQL statement, which shall
be executed, as argument. The different between these two methods is that executeUpdate is
for executing statements that change the datain the database, e.g. CREATE, INSERT or
UPDATE statements. It returns an int that corresponds to the number of records that were
modified.

47

B.3.5 A simple JDBC application

Thisisasimple JDBC application that creates a telephone book and adds some element (i.e.
some persons) to the table. Then it fetches the elements from the tables and prints them on the
screen. At least the table is dropped from the database.

This application contains only one file, DatabaseTest.java, which is shown below. To be able
to test this application, you must have a postgresqgl database installed on your system.

DatabaseT est.java

/*
Fi | ename: Dat abaseTest. | ava
*/

i nport java.sql.*;

/*
Cl assnane: Dat abaseTest
Conment: A testapplication that uses JDBC to access the PostgreSQL
server.
*/
public class DatabaseTest ({

public static void main(String args[])

{

int el enent=1;

try {

/1l Loading the Driver

try{
Cl ass. forNane("org. postgresql.Driver");

}cat ch(C assNot FoundExcepti on cnfe){
Systemerr.println("Couldn't find driver class:");
cnfe.printStackTrace();

}

/1l Get a connection to the PostgreSQ. dat abase.

Connection db = DriverManager. get Connecti on

("jdbc: postgresqgl ://postgres.cs.umu. se/ei 97pva", "ei 97pva",
null);

Systemout. println("The connection to the database was
succesful Iy opened.");

/] Get a Statement instance.
Statenment st = db.createStatenment();

/!l Create a table named tel ephonebook

st . execut eUpdat e

(" CREATE TABLE t el ephonebook (first varchar(30), | ast
varchar (30), number varchar(20));");

48

}

/1 Insert sonme elenents in the database

st . execut eUpdat e

("I NSERT | NTO t el ephonebook VALUES (' Johan', 'Johansson', '090-
123456');");

st . execut eUpdat e
("I NSERT | NTO t el ephonebook VALUES (' Sven', 'Svensson', '090-
654321');");

st . execut eUpdat e
("1 NSERT I NTO t el ephonebook VALUES (' Anders', 'Andersson',
' 090-456789');");

st . execut eUpdat e
("I NSERT I NTO t el ephonebook VALUES (' Per', 'Persson', '090-
987654');");

/1l Execute a query to get all elenments in the table.
ResultSet rs = st.executeQuery("SELECT * FROM t el ephonebook") ;

/1 Print out all elenents in the table naned tel ephonebook
while(rs.next()) {

Systemout.print("Element " + element + ": ");
Systemout.print(rs.getString(1));
Systemout.print(" ");
Systemout.print(rs.getString(2));
Systemout.print(" : ");
Systemout.printin(rs.getString(3));

el enent =el emrent +1;

}

/1 Drop the table named tel ephonebook
st . execut e("DROP TABLE t el ephonebook");

/1 Close the ResultSet and the Statenent variabl es and cl ose
/1 the connection to the database.

rs.close();

st.close();

db. cl ose();

Systemout.println("C osed connection to the database.");

catch (Exception e) {

System out . printl n("Dat abaseTest exception: "
+ e. get Message());
e.printStackTrace();

49

50

C. Sequence Diagrams

BookMaker DB Server Database

: |
1 1
g login(bookmaker) g

SELECT 1
getUserList()
SELECT 2
getUser('user’)
SELECT 3
updateUser('user’,info)
UPDATE

logout(bookmaker)

Figure C-1. The bookmaker updates user information.

BookMaker DB Server Database

login(bookmaker)

SELECT 1
getBetLog('user’)
SELECT 2
SELECT 3
Bet1 { SELECT 4
SELECT 5
Bet 2 { SELECT 6
SELECT 7
Bet 3 { SELECT 8
logout(bookmaker)

Figure C-2. The bookmaker view bet logs.

Client BetServer DB Server Database

clientLogin('user’)

login('user’
gin(user) SELECT 1
etUserInfo('user’
g () getUserlInfo('user’)
SELECT 2
updateUserInfo('user’)
updateUserInfo('user’)
UPDATE

clientLogout('user’)

Figure C-3. A client logs on and updatesitsuser information.

51

(J3sn,)uiBo|recyooy

v 3Lvadn (J9sn,)yoreydors
AAOSMIIBNEOY (¢ ‘Josn.)eHpus
€ 31lvadn
19gpud
¥ 10313S Oregp
¢ 3lvadn
(1eq)19genes
(swoono)awoDinolag
(weas ‘,Josn,)eob
¢ 1J3SNI
¥ 10313S (Gen)e@psLo
(1eq)1egaoeld
(Aodpaq)Ajdas
(J8sn,)181U8
(19g)egmau
(Aednaq)aguers
T L43SNI
(19gneguels)
(19q ‘Jasn iagmau
(z ‘Josn,)yeHuels
(T ‘.Josn,)ifeHpua
T 31lvddn
€10313s (Jasn,)yoreNuels
(T ‘Josn,)yeHuels
¢Lo313s (Jasn,)swea 106
(J9sn,)swea | 106
TLoF13S (49sn,)uibo
: ‘ JUol : : (J3sn,)uiBo|recyooy n
aseqele IEYVE) IN youks L] @) 21BN |[eq100
gered S ad 19AI9S19g 1anI9519g I Yadre|reqiood

Figure C-4. A ssimulation of afootball match.

52

D. Screenshots over the GUI's

EBookkMaker: Logged in to database server

File
User [Match | BettingLog |
UserMNare | FirstMame | LastMame | UserType | Saldo | Get List
hookmaker Fatrik WEraja Boaokmaker 100000.0 | -
mange Magnus Svensson Client 1000.0 | Edit User
linda Linda Johansson Client 1000.0
| Delete User
Clear List
~AddUpdate Users
Login Information ~User Information |
Add User
User name: First name: | |
Password: Last name: | | | Update User ‘
Re-Type Password: User type: i Client ' BM Update Saldo
Civic Reg.Nr.: | | l—
Clear
E-mmyail: | | ;
Account Balance: |

Figure D-1. The User panein the Bookmaker GUI.

F BookkMaker: Logged in to database server - o
File
(User | Match [BettingLog |
User Mame | Home Team | Awray Team | Match Status Get List
matchz Arsenal Evertan Have nat been played. | -
match3 Milan Juventus Have not heen plaved. 5
match Liverpool Arsenal Hawe heen played. Eleateh
Delete match
Clear List
—AddUpdate Match
Login Infarmation Match Information | |
Add match
User name: Home team: | |
Password: Away team: | | | Update match ‘
Re-Type Password: Match Status: | | e - |

Figure D-2. The Match panein the Bookmaker GUI.

53

Bookhkaker: Logged in to database server

__User | BetiD [HomeTeam | AwayTeam | Bet |

mange match1_het2 [Liverpool Arsenal Home Team Scores
mange match1_hets [Liverpool Arsenal Home Team Scores

Figure D-3. First half of the bet log table in the Bookmaker GUI.

BookMaker: Logged in to datahase server

2003-08-0816:37:40 |peppar.cs.umu.sef130.239.40.13
2003-08-0816:87:59 |pepparcs.umu.sef130.239.4013

Figure D-4. Second half of the bet log table in the Bookmaker GUI.

7 Applet Viewer: Client.class - o x

Applet

User name: mange First name: Magpis L ogont

Accoomt Balance: 1000.0 Last name: Svensson Get Info
Civic Req. Nr.: F70101-1111 Save Info
E-mail: mangethotmail . cor

BIF 1 -1
Tingvall

1

/

o
Q
F

Q&S [H[-] 505 koie - 520 ket [TH] (L4

Applet started.

Figure D-5. Screenshot over theclient applet GUI.

55

W, Applet Viewer: FoothallbMatch.class

Figure D-6. Screenshot over the football match GUI.

56

E. The Evaluation Questionnaire

Evaluation Questionnaire

Thisis an evaluation questionnaire which primary purpose isto determineif thisthesis has
managed to present the concept behind rapid betting. A secondary purpose is to determine if
rapid betting is an interesting form of betting.

1. Rateyour sportsinterest (1-5):

2. Which sportsareyou most interested in?

3. How often do you useto bet? Often.... Sometimes.... Never

4. What do you useto bet on? Dogs ...
HarnessRacing
Icehockey ...
Football ...
Floor ball ...
Bandy ...
Handball ...
Volleyball ...

Other sports .o
5. Do you useto bet in your local kiosk? Yes..... No......

6. Do you know any of these betting addresses on the I nternet?

www.atg.se 0 ...
www.betandwin.com
www.centrebet.com
www.expekt.com ...
www.ladbrokes.com
www.svenskaspel.se ...
www.unibet.com ...

Other web sites .o,

7. Do you useto beon any of these sites?

57

8. Do you under stand the concepts behind rapid betting?

58

59

