Multirelational Association Rule Mining

Anton Flank

7th September 2004

Abstract

Data mining is a broad term used to describe various methods for discovering
patterns in data. A kind of pattern often considered is association rules, proba-
bilistic rules stating that objects satisfying description A also satisfy description
B with certain support and confidence. Association rule mining has previously
been restricted to data in a single table, due to the computational complexity
of multirelational algorithms. Recently, many methods for mining relational
data in multiple tables have been proposed. This thesis explores some of these
concepts, aimed at mining multirelational association rules from a standard re-
lational database.

Mining is here formulated as a search problem in the space of database
queries and L, a subset of tuple calculus that is decidable for satisfiability and
syntactic query difference, is used as query language. The search space is ordered
based on subsumption by arranging queries in a refinement graph which is built
top down. New queries are formed by selecting a node in the graph by a uniform
cost strategy and applying a refinement operator, making the query more specific
by adding conditions. Support and confidence threshold parameters are used to
sort out uninteresting rules. Rules are presented as plain English (or Swedish)
sentences, and the user has the option of guiding the search by expressing a
positive or negative opinion about discovered rules.

ii

Contents

1 Introduction 1
1.1 Organization of this thesis 1

2 An overview of Data Mining 2
2.1 Transactiondata 2

2.2 Associationrules 3

2.3 Apriori. 4
2.4 Concept hierarchies. 0. 5
2.5 Classification, prediction and clustering 6
2.5.1 Decision trees oo 6

2.5.2 k-means clusteringo 8

3 Mining over multiple relations 10
3.1 Ourapproach 12
3.2 The £ query language 12
3.3 Refinement graph oL oo 13
3.4 Searchstrategy 14
3.5 Refinement operators. Lo 15
3.5.1 Adding simple conditions 16

3.5.2 Adding component conditions 17

3.6 Nodeinsertion 0 18
3.7 Natural language descriptions oL 20
3.8 Userinteraction L Lo oo 21

4 Implementation 22
4.1 Results. 22

5 Discussion 25
5.1 Comparison to prior work Lo 25
5.2 Futureworko 26
5.3 Conclusions L 27
5.4 Acknowledgements Lo L oL 27

A Example configuration 30

iii

iv

Chapter 1

Introduction

Data mining means to mine patterns from data as an important step in the
larger process of knowledge discovery in databases. The term data mining is
therefore somewhat of a misnomer, but the name stuck. In this work we focus
on mining of association rules. For an example of a association rule, consider a
database containing transactional data from a store selling computer equipment.
Then the following association rule might be discovered: 30% of the customers
buying a color printer will also buy a scanner.

Traditionally, mining has been performed on data stored in a single table.
Recently however, many methods for mining multirelational data have been
proposed. In this thesis we shall assume that data is stored in a standard
relational database and that mining must be available on data stored in multiple
tables.

1.1 Organization of this thesis

Chapter two of this thesis contains a background section that tries to provide
a brief overview of the field of data mining. The concepts of association rules
are presented in detail as it is central to the work presented here. To make the
overview broader, other techniques such as decision tree induction and clustering
are also covered briefly. Chapter 3 describes what motivates moving up to
handling multirelational data, and the approach we take. Concepts such as
query subsumption and the query language £ are presented. Chapter 4 gives
an overview of the implementation of a prototype system and also a test run.
Finally, chapter 5 contains the discussion, with possible extensions of the system
as well as a comparison to prior related work. The last section contains the
conclusions.

Chapter 2

An overview of Data
Mining

Data mining is often viewed as a step in the larger process of Knowledge Discov-
ery in Databases, or KDD for short, which consists of a series of steps: cleaning,
integration, selection, transformation, data mining, evaluation and finally pre-
sentation [10]. Tt is tightly coupled to the use of data warehouses. It employs
algorithms that guide the search and is therefore different from online analytical
processing, or OLAP, although the two can and often are used together [10].

From the start, one of the major aims of the research has been to make
mining of very large, real life databases practical. Very large can nowadays mean
a terrabyte or more. Loosely speaking, the techniques comes from statistics and
machine learning, with the same intention of finding interesting patterns hidden
in the data. Traditionally many such algorithms have made the assumption
that all data will fit in main memory, so much effort has gone into handling
larger databases, improving on efficiency and parallelization [4]. Many of the
algorithms used in the field are prime candidates for parallel implementations,
because often similar operations are performed on a large set of tuples with little
or no interdependence.

Data mining is used to build predictive and descriptive models. A predictive
model is used to explicitly predict values. As an example, based on the customers
who have responded to an offer, the model can predict what other customers
are most likely to respond to the same offer. Descriptive models on the other
hand describe patterns in existing data. It can provide valuable information,
such as identifying different customer segments [8].

2.1 Transaction data

Analysis of transaction data is very common in data mining. In its barest form,
a transaction consists of a transaction id and a set of the items'® that are part of
the transaction. Usually there will also be additional information, such as the
date of the sale, and information about the customer and salesperson.

1 Also called a market basket.

Transaction id items

{printer, laptop, scanner}
{printer, scanner}

{printer, screen}

{laptop, keyboard, modem}

=W N =

Figure 2.1: Transactions.

An example of transaction data is in figure 2.1. In transaction data anal-
ysis one is interested in finding out which sets of products that are frequently
bought together. The knowledge found through this kind of analysis can assist
in planning store layout or to decide which customers are likely to respond to a
offer.

2.2 Association rules

Patterns mined from transaction data often come in the form of association
rules, which have the following definition [14].

Let T = {i1,42,...,im} be the set of all items. Let D be the set of all
transactions, where every transaction 7 is a set of items 7 C Z. An association
rule is of the form X = Y where X C Z, Y C Z, and X NY = . For example
{printer} = {keyboard} is an association rule from the data in figure 2.1.

The support for a set of items 7 is the probability of that itemset appearing
in a transaction: P(7). The support for an association rule X = Y is the
probability P(XUY C Z). To compute the support, the number of transactions
containing all the items in both X and Y is divided by the total number of
transactions. In figure 2.1, the rule {printer} = {scanner} has support 3.

The confidence of an association rule is defined as P(Y|X). It is computed by
dividing the number of transactions containing Y, by the number of transactions
containing X. The example rule has confidence %, and so it can be said that
“67% of people buying a printer will also buy a scanner.”

To weed out uninteresting rules, threshold values are applied, so that for
a rule to be reported, its support and confidence must exceed the user sup-
plied parameters o and (respectively. Such rules are called significant rules.
Even significant rules may not necessarily be interesting as they might simply
represent common sense knowledge. In the end only the user can subjectively
decide what rules are interesting. However, using objective measurements is a
requirement for not overwhelming the user with useless rules.

The association rules handled here are probabilistic so they do not share all
the properties of rules which require strict satisfaction (functional dependencies).
In particular, from the presence of a rule X = A it can not be inferred that
the rule X UY = A holds, because it might not have sufficient support. In the
same manner it does not follow from the rules X = Y and Y = Z that the rule
X = Z holds, because it might not have minimum confidence [5].

Support and confidence are the most commonly used measures of the im-
portance of a rule. There are also other measures, for example lift, which can
contribute useful knowledge. Assume the following probabilities for two itemsets

X and Y in market basket data: P(X) = 0.6, P(Y) = 0.75,P(X NY) = 0.4.
The following rule is then discovered: X = Y, with 40% support and 66%
confidence. This rule can be misleading in that it might lead the user to be-
lieve that a purchase of X implies a purchase of Y. In fact it is the other way
around, a purchase of X decreases the likelihood of purchasing Y, because they
are negatively correlated. Correlation is measured by:

P(XUY)
P(X)P(Y)
also called the lift of the rule X = Y. If this value is less than 1 the
occurrence of X is negatively correlated with, it discourages, the occurrence
of Y. A value greater than one means that the occurrence of X implies the
occurrence of Y. If the lift equals 1, then X and Y are independent [10].

= P(Y[|X)/P(Y),

Corrx)yy =

2.3 Apriori

Discovering association rules is usually divided into two steps. In the first step,
all sets of items with support > « are found, called the frequent itemsets. In
the second step the frequent itemsets are used to discover the association rules.

Perhaps the most well known algorithm in the data mining field is the Apriori
algorithm for finding frequent itemsets. It was developed by the Quest team at
IBM [1]. From that research has then sprung a large number of research papers
and patents. IBM currently holds around 40 patents related to data mining.

The algorithm description of Apriori is given in figure 2.2, where Lj, denotes
the set of frequent itemsets with k items. C} are called candidate itemsets, it is
all the itemsets that have a potential to be frequent.

1: Ly := { frequent 1-itemsets }
2: fork:=2;Ly_1#0;k:=k+1do
3: Cy:=apriori_gen(Ly_1)

4: forall transactions t € D do
5: Cy := subset(Cy, 1)

6: forall candidates ¢ € C; do
7: c.count := c.count + 1

8: end

9: end

10: Ly :={ce Cy | c.count > a}
11: end

12: Answer := (J, L

Figure 2.2: Algorithm Apriori.

A key observation exploited in the algorithm is that all subsets of a frequent
itemset are also frequent. The first step when generating the frequent k-itemsets
is therefore to join together frequent itemsets with k£ — 1 items, to form Cj. This
is the function of the apriori_gen function on line 3. The second step is then
to delete all itemsets from C} that have a subset that is not frequent. This is
the job of the subset function on line 5.

The following example is taken from [5].

Let Ls = {{1,2,3},{1,2,4},{1,3,4},{1,3,5},{2,3,4}}. After step 3, Cy =
{{1,2,3,4},{1,3,4,5}}. The itemset {1,4,5} is not in Ls, so {1,3,4,5} can
not be frequent and will therefore be pruned from Cj in step 5. The algorithm
concludes a priori that the only possible large itemset of size 4 is {1,2,3,4}
without considering the transactions in the database, thus the name of the
algorithm.

A key issue of the performance of the whole Apriori algorithm is the per-
formance of the subset function. A fast way of determining which candidate
itemsets that are contained in a transaction is needed. This can be achieved
by storing the candidate itemsets in a structure called a hash tree. Itemsets
are contained in the leaf nodes of the tree. All nodes are initially created as
leaf nodes but can later be converted to internal nodes if they contain to many
itemsets. Internal nodes are hash tables where each bucket points to another
node. In the root node the branch to follow is decided by applying a hashing
function to the first (lowest numbered) item in the itemset. At the next level of
the tree, the hashing function is applied to the second item and so on.

New improvements of the Apriori algorithm are constantly being invented,
improving on parallelization and handling larger databases. One possible im-
provement is to only use the database to count the support of 1-itemsets. Then,
after the first pass, the database is not used to compute the support at all.
This is achieved by maintaining bookkeeping about which itemsets are present
in each transaction. In early passes it may be the case that the data structures
involved for bookkeeping on the frequent itemsets will be larger than the actual
database. However, in later passes it is expected that these structures will be
much smaller than the database. Therefore, in a hybrid solution, plain Apriori
is used for the early passes, but when it is expected that the bookkeeping data
structures will fit in main memory, a switch is made to the alternative algorithm.
Experiments show that with this improvement, Apriori scales linearly with the
number of transactions [5].

When the database is large, different sampling techniques can be used. The
basic idea is to run the algorithm on a randomly selected subset of the transac-
tions. There is a risk that some itemsets are missed, because they happen to not
be frequent in the subset. However, by using lower thresholds on support and
confidence the risk can be lessened. After the itemsets have been discovered, a
scan through the whole database is made to compute the actual support of the
frequent itemsets [10].

2.4 Concept hierarchies

Often there are hierarchies present among the items in transaction data. For
example, some items in a computer store could be divided into categories as
shown in figure 2.3. If the application area has natural hierarchy structures,
rules including items from across hierarchies may be interesting, while rules
including only items from the same category are not [9]. For example, the rule
{“Color printer”} = {“High res scanner”} might be interesting. Going up the
hierarchy makes it more likely to find significant rules, the rule {“Scanner”} =
{“Printer”} is more likely to have sufficient support than the previous rule. On
the other hand, rules discovered at the top levels of the hierarchy are more likely
to just represent common sense knowledge [10].

[Computer equipment]

High res l Low res l

Figure 2.3: Concept hierarchy.

The way to mine rules across hierarchies is usually in a top down manner.
This is because as the child nodes represent refinements of the parent node, the
support is decreasing as we go down the tree. A problem is that it is expected
that items at deeper levels will occur less frequently, so it might be a good
idea to have lower support thresholds at deeper levels. This will complicate the
search procedure however, because then the child of a node that is infrequent
can still be frequent if the threshold for the child level is lower than at the parent
level [10].

2.5 Classification, prediction and clustering

Both classification and prediction are used to build models that help predict
future data values. The difference is that classification predicts the categorical
label of a tuple, while prediction models a continuous-valued function [10].

The process of classification begins by identifying one of the attributes of
the tuples as the class label. The data set that is used to build the model
is called the training data set. Because the tuples in the training data has a
provided class label this is a supervised learning method. In the second step,
the model is evaluated. Usually this involves a test data set that is independent
of the training data. The model is used to classify the test data and the result
is compared to the class labels of the test data. If a high ratio of correctly
classified tuples is obtained, the model can be used to classify new tuples with
unknown class label. It is important to keep test and training data separate.
Most classification methods are susceptible to overfitting, that is given enough
training they learn the structure of the training data. A learned model can, for
example, be represented by classification rules, decision trees or mathematical
formulas. In this section the decision tree method for classification is covered,
followed by the k-means algorithm as an example of clustering.

2.5.1 Decision trees

A decision tree is a tree where every internal node represents a question re-
garding an attribute of the tuple and the leaf nodes contain a class label. An
example of a decision tree is shown in figure 2.4. Here the tree is used to predict
which customers are likely to respond to an offer.

To classify a tuple, we start with answering the question in the root node,
and choosing the path accordingly. The questions must divide the tuples into

disjoint sets so that only a single path can be taken from every node. Eventually
a leaf node is reached and the tuple is then assigned to that class.

In general decision trees can have nodes with an arbitrary number of children.
However, all trees can be converted to a binary tree and questions at internal
nodes are then reduced to having yes/no answers. Questions could also poten-
tially involve an arbitrary number of attributes, but to maintain interpretability
it is favorable to use questions about a single attribute.

Decision trees have a number of favorable properties. Classification is fast
and straight forward, usually only a few simple questions to answer and then a
classification is obtained. The answer is also easy to interpret, it is easy to see
how the classification algorithm came up with its answer by following the path
from the root to the leaf node [6].

previous response?

positive negative

Figure 2.4: A decision tree

Starting with a training set of labeled tuples, building a decision trees is
usually done top down in a greedy manner. At every step the tuples remaining
are investigated. If all have the same class label we obviously are done and can
create a leaf node with that class label. Otherwise we have the option to either
create a leaf node with the class label that best represents the remaining tuples,
or to split the data. If the data is split, the procedure is then called recursively
for the two datasets that results from the split.

To split the data in a optimal way, it should be split so as to make the
data that goes to the children as “pure” as possible. This is the area of infor-
mation theory. The most frequently used measure is the entropy impurity [6].
For N samples and m different class label values, where P(w;) designates the
probability of a tuple having class label 7,

i(N) == P(w;)log P(w))
J

i(IV) is zero when all tuples belong to the same class, and peaks when the
class label values have equal frequency. To split the data is then a question
of evaluating each possible question and choosing the one that results in the
greatest decrease in impurity.

An important question is to decide when to stop splitting. If splitting is
carried out until all leaf nodes represents a set of tuples in the test data that

share the same class label value, that is zero impurity, the tree will classify the
test data with total accuracy, but will be useless on new unseen tuples.

2.5.2 k-means clustering

Whereas classification is the task of assigning class labels to tuples, clustering is
the task of discovering classes. There are no labeled data to train the algorithm
on, and so it is said that clustering is an unsupervised learning.

This is done by grouping the data into clusters. A general description of a
cluster is that the tuples that lie in the same cluster should be similar, and they
should be dissimilar to tuples that are not in the same cluster [10]. Clustering
can be used as a preprocessing step for classification. It can also be used as a
tool by itself, to identify different segments in the data.

The most often used measure of evaluating a clustering is distance. We then
naturally want the distance between tuples belonging to the same cluster to be
less than the distance to tuples in different clusters. When distance is used as
measure, a metric is needed. A general form is the Minkowski metric [6]:

d 1/‘1
A) = (z e xw)
k=1

When ¢ = 2 it is more known as the Euclidean metric. Setting ¢ = 1 gives
the Manhattan or “city block” distance.

So how do we assess the result of a clustering algorithm? The simplest and
most widely used criterion function for clustering is the sum-of-squared-error
function

Je=3" 3" Ik mf%

i=1 x€D;

where ¢ is the number of clusters, Dy is the tuples in cluster i and m; is the
mean value of the tuples in that cluster.

Input n, number of clusters.
Samples, unlabeled data samples.
Output Cluster centers.

: Initialize all cluster centers u; to a random sample.
repeat
forall samples do
Classify the sample according to nearest u.
end
forall p; do
Recompute p; as the mean value of the samples belonging to that clus-
ter.
end
9: until No change in py, o, ..., tn.
10: return py, p2,. .., tn.

i

Figure 2.5: Algorithm, k-means clustering

An example of a clustering algorithm is the k-means algorithm. It is given
in figure 2.5. The k-means algorithm is an example of an iterative optimization
technique. Like all algorithms in this category it is only guaranteed to find a
locally optimal solution, but not the global optimum.

A major drawback of the k-means algorithm is the need to specify the number
of clusters. A direct approach is to execute the algorithm for increasing values of
k. By observing the behavior of the error criterion, a good value of k£ can often
be determined if the data is well behaved. It is then expected that the error
decreases rapidly until the optimal value, where after it decreases much more
slowly until finally the number of clusters equals the number of data points [6].

Chapter 3

Mining over multiple
relations

Because efficiency is a high priority due to the size of the databases that are
handled, data has traditionally been kept in a single table. Also a large body
of work is available for methods handling data from a single relation. However,
single relation approaches can often be successfully extended to handle multire-
lational data. This includes association rules, decision trees and distance based
methods. To “upgrade” a single table algorithm, it is necessary to extend the
key concepts. For example, to upgrade a clustering algorithm, it is necessary
to define the notion of distance between tuples in the multirelational case. If
this is done successfully, the rest of the algorithm can often be used more or less
intact and will have the single table algorithm as a special case [7].

Moving up to a multirelational algorithm can have several advantages. There
is no longer a need to integrate the data, by joining and aggregation, to make
the data fit in a single table. Integration into a single table can cause loss
of information. In some cases many tricks have to be applied to capture the
correct information in a single table, sometimes it is impossible. Data integra-
tion can also result in a table that is too large to handle. The disadvantage of
many multirelational algorithms is that they are computationally intensive and
do not scale well. But as computers get faster and cheaper and advances in
parallel computing continues it gets more natural to move up to multirelational
algorithms.

In order to talk about multirelational association rules, the notion of a fre-
quent query and query subsumption need to be defined. Instead of the frequent
itemsets of the single relation case, in the multirelational case there are frequent
queries. The support of a query [is simply the number of tuples it returns:
[{z|l}|. To talk about the relative support of a query, the support of the query
needs to be compared to something. For this purpose a focus!' query is chosen.
The relative support of a query is then the number of tuples returned by the
query divided by the number of tuples returned by the focus query. A frequent
query is one that has higher support than a user supplied constant a.

For two queries | and I’, | subsumes U' if |{z|l'}| C |{z|l}|. Subsumption

1Some authors use the word key for this, which in the context of relational databases has
obvious meaning. Therefore the word focus is used instead.

10

is a semantic notion, it holds for all possible database instances, so the tuples
returned by I’ are always a subset of the tuples returned by I. The query I’ is
also said to be a specialization or refinement of [.

A multirelational association rule I = I’ exists when [and I’ are two queries
and [subsumes !’. The support of the rule is given by |{z|l'}| and confidence

is given by ||‘§{9;||ll/}]’“. As in the single relation case, a significant rule is one with

higher support and confidence than the user supplied constants « and 3 [7].

These concepts will now be illustrated with an example over the database
with cars and their owners in figure 3.1. Primary keys are underlined and foreign
keys are printed in bold face.

Car
Person regnr | compan model | owner
pnr ‘ name ‘ gender ‘ age & paty ‘ ‘
7 Jobn N 32 1 Volvo 740 1
2 Volvo V70 1
2 Kalle | M 21
- 3 Volvo V70 2
3 Karin | F 32
1 X i 0 4 Volvo 240 3
e 5 BMW 74 4
Figure 3.1: Example database
Query Phrase Support
“P 1 il 4
Iy = {z|Person(z)} copie
lo = {z|Person(z)A
“Volvo owners” 3
(Fy1)(Car(y1) A y1.owner = z.pnrA
y1.company = 'Volvo’)}
l3 = {z|Person(z)A
“Volvo V70 owners” 2

(Fy1)(Car(y1) A y1.owner = z.pnrA
y1.company = "Volvo’ A y1.model =’V70’}

Figure 3.2: Example queries

Some example queries are given in figure 3.2. Given the focus query is l; the
relative support of these queries would be 1.0, 0.75 and 0.5 respectively. Three
association rules are present: I = lo (o = 0.75, 3 = 0.75) says that 75 percent
of the people own a Volvo; ls = I3 (o = 0.5, 8 = 0.67) says that 67 percent of
the Volvo owners own a Volvo V70%; I = I3 (o = 0.5,3 = 0.5) says that 50
percent of the people own a Volvo V70.

2Note that the rule does not say that if a person owns a Volvo, 67 percent of the time that
Volvo is a V70.

11

3.1 Our approach

In this thesis a prototype system for mining of multirelational association rules
is presented where the input is a standard relational database with the relevant
tables and attributes marked. Discovery of rules is accomplished by a system-
atic search in the space of database queries. To tackle the problem of a very
large, potentially infinite, search space of queries, three basic strategies are used:
first, the search is systematic and orders queries based on subsumption; second,
support and confidence thresholds are used to guide the search and sort out
uninteresting rules; third, mining is interactive. As rules are found they are
presented to the user which then has the opportunity to guide the search. If an
interesting rule is found and the user gives a positive response, the search is di-
rected to try to produce more rules similar to the interesting one. On a negative
response, search is ended in that direction. When user feedback is absent the
system falls back on uninformed search. Rules are presented in plain English
or Swedish sentences, making it possible for the user to quickly understand the
meaning of a rule before taking action and moving on.

Focus will be on developing algorithms for mining multirelational association
rules and providing clear natural language descriptions, not on handling vast
amounts of data or speed of execution.

3.2 The £ query language

All queries handled by the system are specified in the £ query language, a subset
of the tuple relational query language that disallows projection [12].
Queries have the form: {z|R(z) A®}, where ® is a conjunction of conditions:

e Range conditions R(y) which restricts the variable y to range over the
relation R in the database schema.

e Join conditions X6Y, where 6 € {<,>, <, > =,#} and X,Y are compo-
nent references. A component reference x.a selects the attribute a of the
relation that the variable x ranges over.

e Simple conditions XY, where 6 € {<,>,<, > = #} and one of X, Y is
a component reference and the other is a constant.

e Set conditions XeC, where X is a component reference, C' is a set of
constants, and € is one of the set membership operators {€, ¢}.

o Component conditions s(Jy1) ... (Jyn)(C’), where C’ is the conjunction of
any number of non-component conditions and the sign is determined by
s, = for a negated component.

L has a number of favorable properties. For any query it can be determined
if it is satisfiable. Unsatisfiable queries will never return any tuples no matter
what the state of the database is. Also, the syntactic difference between queries
can be determined. Combining these two makes it possible to determine if one
query subsumes the other, or if two queries are equivalent.

Queries in L are easily translated into SQL. For example, query I; from
figure 3.2 is equivalent to the following SQL query:

12

SELECT distinct *

FROM Person as x

WHERE exists(select * from Car as yl where
yl.owner = x.pnr and yl.color=’Blue’);

Support for a query is computed by translating the £ query into a SQL query
of the form select count(*) from X, where X is the result of translating the
query as above.

STEP is a system for manipulating queries in £ and the more general Q query
language. It is used in this system for manipulating query expressions and
generating natural language descriptions. For more information about STEP,
see [13] and the online demo [3].

3.3 Refinement graph

A useful ordering of the space of database queries is that of a refinement
graph [7]. Part of the refinement graph for the example database in figure 3.1
is shown in figure 3.3.

People
R BN
Car owners Females Males
- ¥ ~
Volvo owners BMW owners Female Car owners
S Ve

Female BMW owners

Figure 3.3: Refinement graph

A important observation is that support is nonincreasing when moving from
parent to child, that is from a more general to a more specific query, in the graph.
The graph itself is directed and acyclic: a node can have multiple parents and
children, and there are no cycles.

For any two nodes [and I, if [subsumes I’ then [is a ancestor to I’ in the
graph. This is a requirement for using the graph to extract all valid association
rules.

Only refinement graphs with a single node at the topmost level will be con-
sidered here, where the root node contains the focus query of the search. Also,
when a query [subsumes a query [, we require that I’ is at a greater distance
from the root node than [, this makes insertion of new nodes in the graph easier.

Extracting all valid association rules present in a set of queries is straight
forward using the refinement graph, because a association rule [= [’ exists
whenever [is an ancestor to !’ in the graph. Usually we are also only interested
in the significant rules, algorithm is given in figure 3.4.

We use a search algorithm that starts with the focus query and builds the
refinement graph top down. A uniform cost strategy is used to select a node for

13

Input Refinement graph

Output All significant association rules

1: R:=0.
2: forall nodes [in graph do

forall Descendants I’ of node in graph do
if support, |{z|l'}| > « and
confidence, REILSTISS 3 then

[{z[l}]
R:=RU{l=1}
end
end
end
return R.

Figure 3.4: Algorithm, extract association rules

expansion. Refined queries are then formed from the selected node by applying
a refinement operator and the resulting nodes are inserted into the refinement
graph.

3.4 Search strategy

Uniform cost search is used to choose which node to expand. Every node has
an associated cost and the node with lowest cost is expanded first. For a new
node, the cost is computed by the cost of the expanded node plus an additional
cost computed from the operator used and the support of the new node. Cost
is specified for the following operations:

Adding any type of condition, except a join condition, to the query.

Adding a join condition. The cost for this operation is kept higher than
the cost for other conditions in order to favor shorter rules. Additionally
it is possible to include a penalty cost for every time a join with a certain
relation is used.

The cost is modified based on the support of the resulting query. This value
should be negative so that the search favors nodes with high support. By
default this value is the relative support of the node multiplied by — ﬁ:th
of the cost of adding a condition.

The cost is modified based on the confidence of the association rule rep-
resented by the node and the parent node from which it was generated.

A maximum cost threshold may be specified so that the search will simply
disregard nodes that have a higher cost than this value.

Some of the cost modifiers are negative. This could potentially lead to a node

having less cost than the one from which it was generated, and even negative
cost. This is in principle not a problem, however a lower bound of zero on the
cost is maintained.

14

3.5 Refinement operators

When a node is expanded, new nodes are generated by applying a refinement
operator. To discover all valid association rules, all possible database queries
given the marked attributes in the configuration must be generated. Refinement
operators must therefore be applied in a systematic way so that it is known when
all possible refinements of a query have been generated. It is also desirable to
avoid duplicates: generating two equivalent queries. The algorithm is given in
figure 3.5.

Input Database, configuration
Output Refinement graph

1: Create root node with focus query and relation stack containing the focus relation.
2: Initialize node queue containing the root node.

3: while node queue not empty do

4: Dequeue node queue.

5. Let R := top of relation stack of node.
6: while attribute stack of R not empty do
7 forall child nodes in refine(node, pop(attribute stack)) do
8: Copy relation stack to child.
9: if refinement added a join with relation S then
10: Push S on relation stack of child
11: end
12: insert(node, refinement graph)
13: if Node was not duplicate and has enough support then
14: Compute cost of child and enqueue on node queue.
15: end
16: end
17 end
18: Pop relation stack.
19: end

Figure 3.5: Algorithm, node generation

Note that queries with low support are not added to the node queue, be-
cause they cannot produce any refinements that have sufficient support and can
therefore be discarded.

Duplicates will not be generated, except in the case of multiple joins with the
same relation. This would happen for example if two relations R;, Ry exists with
Ry having a foreign key attribute to R2, and Rs a foreign key attribute to Ry. It
is up to the function insert, that inserts new nodes into the refinement graph,
to detect duplicates. Because variables in queries are existentially quantified,
duplicates can not always be totally discarded, consider figure 3.6. Nodes 4 and
7 are equivalent and only one of them is kept, whichever is generated first, the
other node is discarded. Nodes 2, 3 (and 5, 6) are also equivalent, however nodes
3 (or 6) cannot be discarded because then node 4 (or 7) would not be generated.
The problem is currently handled by only purging duplicates resulting from
adding non-join conditions; a duplicate resulting from adding a join condition
is removed from the graph, but still kept in the node queue.

The function refine takes a query and a attribute as parameters. In the
configuration the user specifies which operator is applicable to each attribute.

15

1: OwnsaCar

2: OwnsaVolvo 5: OwnsaBMW
- L
v equivalent _equivalent OwnsaCar
3: OwnsaVolvo, 6: OwnsaBMW, Ve AN
and aCar and aCar
j \ OwnsaVolvo OwnsaBMW
equivalent
N Ve
4:OwnsaVolvo, _ » [-OwnsaBMW, OwnsaBMW,
and aBMW and aVolvo and aVolvo

Figure 3.6: left: Search tree with equivalent queries. Right: Refinement graph

There are two basic kinds of operators, those that add simple conditions and
those that add component conditions.

3.5.1 Adding simple conditions

The most basic operator adds a simple condition to the query, for example:
{p|Person(p)} ~ {p|Person(p) A p.age > 50}. That is, it adds constraints on
a single attribute of a relation. Conditions added by this type of operator are
either simple conditions or set conditions. Some operators can also add more
than one condition in a single refinement. The following types of attributes are
distinguished:

Nominal The value of the attribute belongs to a set of distinct values. No
ordering among the attributes is present, so set operators are allowed, but not
arithmetic operators.®> For example the attribute pet might be a nominal at-
tribute with the values {cat, dog}.

Ordinal attributes are set-valued, like nominal attributes, but there also exists
an ordering among the values, partial or total, so that the arithmetic operators
can be applied. For example the attribute brightness might take on the values
{light, medium, dark}.

There are many possible ways to add conditions for ordinal valued attributes,
among which the following are used in this system:

e Open ended intervals: brightness > medium.

e Closed intervals: brightness > light A brightness < dark. When using
closed intervals, two conditions will be added for every refinement.

e Pick one. Treats the attribute as a nominal attribute.

With closed intervals comes the additional choice of deciding if all possible
combinations of intervals should be used, or possibly just a subset. Also, closed
and open ended intervals may be used in combination.

3except possibly ‘=’ and ‘#’. But there is alway an equivalent expression using the set
operators

16

For performance it is crucial to refine the intervals in the right order so that
the refinement graph can be pruned in a efficient way. For example we want
to generate the query {p|Person(p) A p.age > 10 A p.age < 65} first, and then
generate the query {p|Person(p) A p.age > 18 A p.age < 50} as it is subsumed
by the first query.

Intervals introduce complications with which rules should be considered im-
portant. If there is a decrease in support of 10% of the refined query this would
normally represent a interesting rule with confidence 90%. However, if the query
in the child is the result of shrinking the interval in the parent by ten percent
then it is only expected.

Numeric attributes like integers and floats need to be split into intervals
before they can be used. For example a attribute age can be split into the
intervals <18, >18 and <65, and >65. This can be seen as turning the attribute
into a ordinal or nominal valued attribute. In the configuration this would be
done by specifying the attribute as set valued with the “split points” 18 and 65.

To obtain meaningful intervals is not always straight forward. Sometimes
“natural” intervals exists, for example the intervals above divides persons into
children, adults and seniors. If there is no such obvious division, different clus-
tering techniques could be used. However, as queries are refined and tables are
joined, this might impact the distribution of attribute values in unforeseen ways.
But running the clustering algorithm every time a join is performed might be
too inefficient. Another approach is to split the attribute variable into intervals
of a sufficiently small granularity and then use the the search process itself to do
the clustering so to speak. Additional complications arise if the attribute is not
linearly scaled. Currently these issues are ignored by requiring that intervals be
specified in the input configuration.

3.5.2 Adding component conditions

The first kind of operator added simple conditions. The second kind of operator
adds a component condition to the query. For example the query {p|Person(p)}
could be refined to {p|Person(p) A (3c)(Car(c))}. This allows the construction
of queries that join tables in the database.

Assuming there is at least one car in the database, the two queries are equiv-
alent; to be meaningful, there has to be a relationship between the variables.
Therefore the operator will always add a join condition to the query in the
same refinement, and the example query would be refined into {p|Person(p) A
(Fe)(Car(c) A c.owner = p.id)}. At present, the system will only add join con-
ditions with the operator “=", these are commonly called equi-joins.

For a join to represent useful knowledge there must be a relationship be-
tween the tables involved. The participation of entities in relationships is part
of the conceptual model of the database. There can be different types of con-
straints present on participation that impacts the way meaningful queries can
be constructed. Of most importance here are the structural constraints [9]. At
the representational level, the actual tables of the database, relationships are
materialized by means of foreign keys.

The user can specify an attribute to be a foreign key to an attribute in
another relation, or specify a primary key attribute to be referenced by a foreign
key attribute in another relation. Both options will result in operators adding

17

a join with that relation. If an attribute is referenced by another attribute, the
system is by default allowed to add multiple joins with that relation. This is
not the case with a foreign key attribute, because by definition it designates
a single tuple in the other relation. Talking at the conceptual level, multiple
joins should be allowed on a referenced-by attribute if it has a (z,n) structural
constraint in the relationship. This is the default assumption of the system. It
allows generation of queries such as “A person owning a BMW, and a Volvo”.

If a foreign key or referenced-by attribute has a (x > 1,n) structural con-
straint, the support of the refined query will be the same as that of the parent.
In such cases the computation of support can be skipped.

Information about relationships could in part be extracted automatically
from the database. Most notably this includes foreign key and not NULL con-
straints. At present however, it is up to the user to specify the relationships in
the input configuration.

Negated component conditions

A negative association rule is of the form “70 percent of customers who buy X
do not by Y”. Such rules can potentially be very interesting. Currently however,
component conditions with negative sign are not allowed in queries in this sys-
tem. The problems with negation are partly technical; query refinement is not as
straight forward as with positive component conditions. This is because adding
conditions to a negated component condition will weaken the negation, thus
making the query more general. This violates how the system currently works
under the assumption that operators adds conditions to a query and thereby
refining it.

Disregarding the technical issues there is a serious problem that has to do
with how to evaluate negative information. Consider the case with itemsets. It
is expected that only a small fraction of the items will ever be bought together.
If there is 1000 items in the inventory only a very small fraction of the 21°%° com-
binations of all items will appear even once in the database. A naive approach
would generate a very large amount of negative association rules. Therefore
prior knowledge must be exploited in order to find interesting negative associa-
tions. One method is to use concept hierarchies [9], support for this is however
not currently implemented in this system.

3.6 Node insertion

As new nodes are generated by the algorithm in figure 3.5, they are inserted
into the refinement graph by the function insert, see figure 3.7. Initially it is
called with the root node of the graph as the first argument, it may later be
called recursively. The second argument is the newly generated node.

The algorithm traverses the refinement graph top down and determines the
parents of the new node in the graph; a parent node is a node that subsumes
the new node, and does not have any children that subsumes the new node. For
a example of a generated graph see figure 4.3 on page 24.

A query subsumed by an infrequent query is itself infrequent, this fact is
used to prune infrequent queries. A node inserted that is later found to be
infrequent after querying the database is kept in the graph. Later, if a query

18

Input Node N in graph; new node
Output refinement graph with new node inserted

1: forall children of N do

2 if child not already visited, and child subsumes new node then
3 if child has low support then
4: return (from all recursive calls) infrequent query found.
5: else
6 Call recursively insert(child, new node).

7 end

8 end

9: end

10: Mark N as visited.

11: if new node was not subsumed by any child then

12: if new node subsumes N then

13: return (from all recursive calls) duplicate query found.
14: else

15: Add N to the parents of new node.

16: end

17: end

Figure 3.7: Algorithm, node insert

is subsumed by an infrequent query in the graph, it can be discarded directly
without querying the database.

The algorithm only determines the parents of a new node but not the chil-
dren. This puts restraints on what refinements are allowed and on the order of
insertion. To generate the complete refinement graph, nodes must be inserted
level by level, and a query must not subsume a query at equal or lower distance
from the root of the graph. As an illustration, consider again the refinement
graph from the example database in figure 3.3 on page 13. If the query “Car
owners” had been inserted after the query “Female car owners” into the graph,
the fact that the first query subsumes the second would not be caught. Because
we are doing uniform cost, not level by level search, some edges from the refine-
ment graph could be missing. The only solution to this problem so far has been
to reinsert all nodes in the graph, level by level. This would minimally have to
be done once, before gathering all rules from the graph. In practice it pays off
to do it more often, because as the refinement graph is used to prune infrequent
queries an incomplete graph leads to unnecessary database queries. A more
satisfactory solution would of course be a insertion algorithm that maintains
the complete refinement graph regardless of the order of insertion, or perhaps a
revised search strategy.

There are some strategies that can be used to avoid unnecessary subsumption
tests. As the number of tests for every insertion grows with the size of the graph,
and testing in itself is a NP hard problem in the length of the queries [12], it
is worthwhile to try to use them only when needed. First, the node that was
used to generate the new node certainly subsumes the new node. That node
and all of its ancestors are therefore marked as “subsumers” before executing
the algorithm. When a check is made to see if the new node is subsumed by a
node that is marked in this way, the check immediately returns true. Second, if
a node [subsumes a node I, then all ancestors of [in the graph also subsumes

19

. Therefore a first step in algorithm 3.7 would be to mark all ancestors of N
as subsumers.

3.7 Natural language descriptions

The system generates natural language descriptions of the rules that are found.
Descriptions of £ queries are generated by STEP from entries in its phrasal
lexicon [13]. For the descriptions to correctly capture the meaning of the rules,
entries for all attributes included in the search must be specified. Each entry
consists of a query and a set of patterns, here are some entries for the database
in figure 3.1:

<{x | Person(x)}: H[e sing :’person’],
H[e pl : ’people’]>

<{x | Car(x)}: H[e sing :’car’],
H[e pl :2cars’]>

<{x | Car(x), x.model = $ci1}: C[e :’of $cl1 model’]>

<{x | Person(x), {Car(yl), yl.owner = x.pnr, _1}}:
Cle :’owning D({yl | Car(yl), _}, (e sing indef))’]>

Each entry consists of a query and a set of patterns, where the type of the
pattern can be for example H for head or C for complement. The features controls
the applicability of a pattern, including selecting the language, singular /plural
form and definite/indefinite form. More examples of entries can be found in
appendix A.

We will not delve into the details of how exactly the natural language gener-
ation process works. Generating a description for a query is then, from the point
of view of this system, simple. It requires a call to a function that takes two argu-
ments, the query and the set of features. Given the above entries, the description
of the query {x|Person(z) A (Jy)(Car(y) Ay.model = V70’ Ay.owner = z.pnr)}
with the features (e, sing, def) would read: “A person owning a car of v70
model.”

Descriptions of multirelational association rules are always a single sentence
and has three main parts. A description of the left hand side rule (LHS), a
description of the right hand side rule (RHS), and the confidence of the rule.
Additionally some template text is added to form a readable sentence. An
example of a description is:

85% of the the tall people was a man.

Here the three main components are in italics and the rest is template text.
The LHS of the rule is presented in definite plural form, while descriptions of
the RHS is in indefinite singular form.

The conditions shared among the LHS and RHS cause repetition in the
description:

Among the tall, old people with a red house and a cat, 60% of
the time it was a tall, old person with a red house and a black cat.

20

To avoid repetition, all simple conditions and set conditions shared with the
LHS are removed before describing the RHS. Applying this to the above rule
gives:

Among the tall, old people with a red house and a cat, 60% of
the time it was a person with a black cat.

3.8 User interaction

One of the goals was to make the mining interactive. As rules are found they
are presented to the user which then has the opportunity to express opinions
about the rule. A negative response ends the search in that direction, while a
positive response makes the system strive to produce more rules similar to the
one presented.

The user must specify on which queries to take action. There are three ways
of selecting queries. It can be based on the specific queries that are part of a
presented rule or by a query manually specified by the user. It can also be based
on specific relations or attributes that are used in a rule.

There are two types of actions the system can take. For undesirable rules it
can kill the selected nodes; a killed node is removed from the node queue and
not further considered for expansion. Alternatively, the system can introduce
a cost modifier for the selected queries. Desirable queries get a negative cost
modifier while undesirable queries get a positive modifier.

A session could look like this, triggered by the system having found a new
rule:

(support 15%): 80% of the customers living in Umed was a female.
Options: 1:Interesting 2:Not interesting 3:Continue
>> 2

Select queries at least as specific as:

1: "A customer living in Umed"

2: "A female customer living in Umed"

3: Select all queries containing attribute Person.gender.
4: Specify query or attribute manually.

>> 2

Action:

1: Kill

2: Low priority

3: Enter priority manually

>> 1

To present such a dialog every time a new rule is found would quickly become
tedious for the user. A way of lessening the number of presented rules is to only
present rules where the RHS is a newly generated node and the LHS is the
direct parent of that node. Another way is to use threshold values on support
and confidence for presenting a rule.

21

Chapter 4

Implementation

A prototype system was implemented that is presented in this section. A high
level overview of the architecture is shown in figure 4.1.

PostgreSQL
DBMS

Data Mining
System

Step - SPASS

Schema Tuple
Expression Processor Theorem prover

Figure 4.1: System architecture

The system uses a PostgreSQL database to store the data. Queries sent to
the database will mostly be count queries to compute the support of queries.
It uses STEP for equivalence/subsumption tests and for generating natural lan-
guage descriptions of queries. STEP uses the theorem prover SPASS to determine
satisfiability of queries [2].

4.1 Results

The system was tested on a toy database, containing transactional data. The
schema for the database is shown in figure 4.2, only the attributes used in the
mining are shown. Primary keys are underlined and foreign keys are printed in
bold face.

The first thing to decide is what we want to mine for. In this case the focus
will be on the Transaction relation, because we are interested in what items
are bought together. Note that any relation can serve as the focus, for example
Customer could be an interesting focus as well.

Next comes the configuration of the system. The complete configuration file
is given in appendix A. Which attributes should be included in the search? We
are interested in what cities items are sold, how/if the gender of our customers

22

Customer (cid, gender)

Item (iid, name)

Store (sid, city)

City (cityid, name)

Transaction (tid, customer, store, time)

Contains (transaction, item)

Figure 4.2: Schema for the test database.

influence what they buy, and at what time of day transactions take place. In
addition to the foreign key relationships, the types of the remaining attributes
have to be specified. Attributes gender in Customer, and name in City are nom-
inal valued. Once this is specified, the system will figure out the actual values
from the database. From the attribute time in Transaction we are interested
in the time of day that the transactions take place. We choose to divide it into
intervals: {morning, before noon, after noon, evening}, and therefore specify it
as an ordinal attribute with the “split points” {9,12, 18}.

Configuration of natural language generation comes next. For example de-
scriptions for the intervals of the time attribute could be provided:

<{x | transaction(x), x.time = $c1 }: C[e :’at time $c1’]>

<{x | transaction(x), x.time <= 9 }: C[e :’in the morning’]>
<{x | transaction(x), x.time <= 12 }: C[e :’before noon’]>

<{x | transaction(x), x.time <= 18 }: C[e :’in the afternoon’]>
<{x | transaction(x), x.time > 18 }: C[e :’in the evening’]>

Finally, the threshold values must be chosen. We chose to set a minimum
support value of 5%, and a minimum confidence threshold of 70%.

A testrun was made with this setup on a tiny database with 5000 trans-
actions, with a total number of 8000 item in all transactions together. The
database server was a UltraSparc I, 167TMHz with 512Mb of RAM, running on
another host in the network while SPASS was running on the same host as the
data mining system, a Intel Pentium 4, 3GHz with 1Gb of RAM. The system
was run until it had expanded 1000 nodes, counting nodes for which all children
was generated, and nodes that was killed. This involved a total of 272 SQL
queries and 16509 calls to SPASS. The total execution time was 21 minutes,
real time, or about 1.3 seconds per node. Of the total runtime, 39 percent was
spent waiting for SQL queries to finish and 60 percent was spent waiting for
SPASS calls to finish.

Examples of rules that were discovered:

(support 0.1) 88.5% of the transactions containing a Printer, by a female
customer, in a city named Umea, was a transaction containing a Scanner.

(support 0.1) 80.7% of the transactions by a customer, containing a Scan-
ner, taking place in the morning, was a transaction by a female customer.

(support 0.1) 80.6% of the transactions by a customer, taking place in the
morning, was a transaction by a female customer.

See figure 4.3 for parts of the generated refinement graph.

23

support:1.0
atransaction

support:0.7

support:0.8

atransaction

inacity, by
afemale customer

atransaction
support:1.0 in acity named
atransaction Umea
v inacity
; support:0.6
astl:gﬁggt;ﬁlc')?] support:(_).6 . atrqnsacti on
inasore ™ . atransaction inacity, taking
in astore, taking placein the
placein the after noon
support:0.6 | after noon support:0.8
atransaction support:0.6 atransaction
taking place atransaction in astore, by
intheafter |] by acustomer, afemale customer
noon taking place
SUpPOrt:1.0 L — in the after
atransaction noon
by acustomer support:0.8
atransaction
support:1.0 by afemale customer
atransaction
- support:1.0
that contains... [l atransaction
containing a
item

Figure 4.3: Refinement graph over queries in transaction example.

24

Chapter 5

Discussion

5.1 Comparison to prior work

This work is related to other efforts in multirelational data mining. Other
approaches taken in this field includes graph-based data mining and approaches
influenced by inductive logic programming which often use Datalog as their
query language. One example of an early such system is WARMR, which is
presented in this section.

WARMR is a system for discovering frequent Datalog queries [11]. Although
a discussion of the foundations of Datalog is beyond the scope of this thesis it
can be said that it shares the same expressive power as relational algebra (and
calculus), but Datalog also has recursion. Concepts such as ancestor which can
not be expressed in relational algebra can therefore be expressed in Datalog.

The WARMR system is similar to this system in that it uses the notion of
a focus query, and it uses refinement operators such that a query subsumes any
queries that are refined from it. WARMR is more general than this system in
that it uses Datalog which is more expressive than £. However, Datalog is often
too expressive, so there is a need to restrict how queries are formed. To restrict
the refinement that can be made to a query, a declarative language bias is used.
In addition to specifying the focus, the bias settings also specify input-output
modes for variables. Atoms are allowed to appear multiple times in a query as
long as the modes are obeyed:

+ Variable is input. It has to be bound before the atom is encountered.
— Variable is output. It is bound by the atom.

4+ Variable can be both input and output.

Assuming the language bias specification is {p(+,—),q¢(—)}, valid queries
include ? — ¢(X), p(X,Y),p(Y, Z). But the query ? — p(X,Y) is invalid.

Specifying correct declarative biases, WARMR has the Apriori algorithm
as a special case. It also has a number of approaches for discovering frequent
itemsets, such as concept hierarchies and sequential pattern discovery as special
cases [7]. The algorithm for WARMR is given in figure 5.1.

25

Input Database r; Declarative language bias £ and focus; threshold min-

Jreg;
Output All queries @ € £ with frequency > minfreq.

1: Initialize level d := 1

2: Initialize the set of candidate queries Q; := {? — focus}
3: Initialize the set of (in)frequent queries F := ;7 := ()
4: while Q4 not empty do
5: Find frequency of all queries Q € Qyq
6: Move those with frequency below minfreq to 7
7. Update F := F U Qq
8 Compute new candidates: Q411 = WARMRgen(L;Z; F; Q4)
9: Increment d
10: end

11: return F

Figure 5.1: Algorithm, WARMR

1: Initialize Qqy1 := 0.
2: forall Q; € Qq, and for each refinement Q’; € £ of Q; do
: Add Q) to Qgy1, unless:

1. Q} is more specific than some query € Z, or
2. Q; is equivalent to some query € Qg41 U F.

4: end
5. return Qg4

Figure 5.2: Algorithm, WARMRgen

5.2 Future work

Evaluation of the system on a larger database is needed. Finding a large rela-
tional dataset to perform testing on would be the next step in the future work.
As well as testing performance it is also needed to evaluate how the natural
language descriptions and user interaction work in a more realistic setting.

Regarding the algorithms a important issue is to look for ways of improving
the node insertion algorithm. At present, a complete rebuild of the refinement
graph is required at least once in order to compute the complete set of association
rules, but must in practice be done often in order to lessen database scans. If
possible, a algorithm that maintains the complete refinement graph regardless
of the order of node insertion would be preferred, otherwise it may be necessary
to revise the search strategy. Uniform cost search is flexible, expanding only the
most interesting nodes and it also allows a natural way for user interaction by
adding cost modifiers. On the other hand a level-wise approach, like breadth
first or beam search, would allow the node insertion algorithm to be used in its
present state, without any rebuilding of the refinement graph.

More understanding of the complexity of the algorithms is needed. We would
like to be able to determine under what circumstances mining is practical. Im-
portant factors are the size of the database, and the size and complexity of the

26

search space. The size of the search space is influenced by the number and types
of marked attributes, and the query language. Extending allowed queries to the
whole £ language by allowing negated components would for example increase
the size of the search space. However, if threshold levels and the properties of
the data are such that large parts of the search space can be pruned away at
a relatively early stage, mining may be possible even on a very large database
and complex search space. It is therefore a hard task to determine when mining
is actually practical.

We expect that parallelization will be a important factor in speeding up
the mining. At present the system alternates between node insertion in the
refinement graph and database querying, but the two tasks might be performed
simultaneously for different queries. The task of node insertion itself may be
parallelized further. The main focus is however on minimizing database scans,
and here it will be important to compute the support of as many £ queries
within a single database scan as possible. Currently the system always issues
one SQL query for every £ query, something that certainly can be improved.

Making the mining interactive is one of the main goals of the system. One
of the main problems here is that too many similar rules are presented, quickly
making the user bored. We will look for ways of minimizing the number of
dialogs presented, but without making the user lose too much control over the
search process. A evaluation on a real database would doubtlessly reveal more
issues that needs to be handled in this area.

5.3 Conclusions

This thesis has explored some of the concepts of multirelational association
rule mining, where mining is performed over multiple tables in a relational
database. Mining is viewed as a search in the space of database queries and
L is used as query language. Queries are ordered based on subsumption in
a refinement graph, which starting with the focus query is built top down.
A uniform cost strategy is used to select the next node for expansion, new
refined queries are then formed by applying a refinement operator. Threshold
parameters for support and confidence helps to sort out uninteresting rules.
Also, the mining is interactive, inviting the user to guide the search in the right
direction. Rules are presented as plain English or Swedish sentences, and the
user can guide the search by expressing positive or negative opinions about
discovered rules. A prototype system was implemented that uses the STEP
system and a standard relational database.

5.4 Acknowledgements

Thanks goes to my advisor Michael Minock for his help during the writing of
this thesis.

27

Bibliography

[1]

[10]

[11]

[12]

[13]

IBM Quest group. http://www.almaden.ibm.com/software/quest/. Ac-
cessed june 2004.

SPASS theorem prover. http://spass.mpi-sb.mpg.de. Accessed june 2004.

Step, live demonstration. http://www.cs.umu.se/ mjm/step/. Accessed
june 2004.

R. Agrawal, A. Arning, T. Bollinger, M. Mehta, J. Shafer, and R. Srikant.
The quest data mining system. In In Proc. of the 2nd Int’l Conference
on Knowledge Discovery in Databases and Data Mining, Portland, Oregon,

August 1996.

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules in large databases. In Proceedings of the 20th International
Conference on Very Large Data Bases, pages 487-499. Morgan Kaufmann
Publishers Inc., 1994.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification
(2nd Edition). Wiley-Interscience, 2000.

Saso Dzeroski. Multi-relational data mining: an introduction. SIGKDD
Ezplor. Newsl., 5(1):1-16, 2003.

Herb Edelsten. Mining large databases - a case study. Technical report.

Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Sys-
tems. Addison Wesley, third edition, 2000.

Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers, 2001.

H. Toivonen L. Dehaspe. Discovery of frequent datalog patterns. Data
mining and Knowledge Discovery, 3(1):7-36, 1999.

Michael Minock. Data integration under the schema tuple query assump-
tion. Technical report, june 2003.

Michael Minock. Natural language access to relational databases through
STEP. Technical report, Department of Computing Science, Umea Uni-
versity, 2004.

28

[14] T. Imielinski R. Agrawal and A. Swami. Mining associations between sets
of items in massive databases. In Proceedings of the ACM SIGMOD Int’l
Conference on Management of Data, Washington D.C., pages 207-216,
May 1993.

29

N

© N o o

25

Appendix A

Example configuration

This is the configuration file used in the example in section 4.1.

(defconstant
(defconstant
(defconstant
(defconstant
(defconstant
(defconstant
(defconstant

(defconstant
(defconstant

+minimum-support-percent+ 0.05)
+confidence-important-threshold+ 0.70)
+cost-add-cond+ 100)

+cost-add-join+ 150)

+cost-reuse-join+ 1000)
+cost-support-percent+ -1)
+cost-important-rule+ -500)

+maximum-cost+ 1000000)
+set-default+ :pick-one)

(setf *schemax
> ((Customer
((cid :numeric :pk) name (gender :string)
(age :numeric) (height :numeric) address))
(Item ((iid :numeric :pk) (name :string) price))
(Store ((sid :numeric :pk) city size))
(Inventory (store item))
(City ((cityid :numeric :pk) name population latitude longitude))
(Contains (transaction item))
(Transaction ((tid :numeric :pk) customer (time :numeric) store))
(Store ((sid city)))

))

(setf xfds* ’((Customer (((cid) (name gender age height address))))

(Item (((iid) (name price))))

(Store (((sid) (city size))))

(City (((cityid) (name population latitude longitude))))
(Transaction (((tid) (customer time store))))

(Store (((sid) (city))))

)

(setf *dm-schemax
’((Customer ((gender :set)))
(Item ((name :set)))
(Transaction ((tid :referenced-by (Contains transaction)

:multiple-append)
(time :set (:split-points 9 12 18))
(customer :foreign-key (Customer cid))
(store :foreign-key (Store sid))
))

(City ((name :set)))
(Contains ((item :foreign-key (Item iid))))
(Store ((city :foreign-key (City cityid))))

)

(add-patterns

<{x | transaction(x)}: H[e sing indef :’transaction’],

Hle pl def :’transactions’]>

30

51 <{x | transaction(x), x.time = $c1 }: Cle :’at time $c1’]>

|
52 <{x | transaction(x), x.time <= 9 }: C[e :’taking place in the morning’]>
53 <{x | transaction(x), x.time <= 12 }: C[e :’taking place before noon’]>
54 <{x | transaction(x), x.time <= 18 }: C[e :’taking place in the after noon’]>
55 <{x | tramsaction(x), x.time > 18 }: C[e :’taking place in the evening’]>
56
57 <{x | transaction(x), {customer(c), x.customer = c.cid, _}}:
58 Cle :’byD({c | customer(c), _ }, (e indef sing))’]>
59
60 <{x | tramsaction(x), {store(s), city(c),
61 x.store = s.sid, c.cityid = s.city, _}}:
62 Cle :’inD({c | city(c), _}, (e indef sing))’]>
63
64 <{x | transaction(x),
65 { contains(b), item(i), b.transaction = x.tid, b.item = i.iid, _ }}:
66 Cle :’containingD({i | item(i), _}, (e indef sing))’]>
67
68 <{x | transaction(x),
69 { contains(b), item(i), contains(b2), item(i2), contains(b3), item(i3),
70 b.transaction = x.tid, b.item = i.iid, i.name = $ci,
71 b2.transaction = x.tid, b2.item = i2.iid, i2.name = $c2,
72 b3.transaction = x.tid, b3.item = i3.iid, i3.name = $c3,
73 i.iid <> i2.iid, i2.iid <> i3.iid, i3.iid <> i.iid }}:
74 Cle :’containing a $c1, a $c2 and a $c3’]>
75
76 <{x | transaction(x),
77 { contains(b), item(i), contains(b2), item(i2),
78 b.transaction = x.tid, b.item = i.iid, i.name = $ci,
79 b2.transaction = x.tid, b2.item = i2.iid, i2.name = $c2,
80 i.iid <> i2.iid }}:
81 Cle :’containing a $cl and a $c2’]>
82
83 <{x | customer(x)}: H[e sing indef:’customer’],
84 H[e pl def:’customers’]>
85
86 <{x | customer(x), x.gender = ’F’}: O[e sing :’female’],
87 O[e pl :’females’]>
88
89 <{x | customer(x), x.gender = ’M’}: O[e sing :’male’],
20 O[e pl :’males’]>
91
92 <{x | city(x)}: H[e sing:’city’],
93 H[e pl:’cities’]>
94
95 <{x | city(x), x.name = $cl1 }: Cle :’named $c1’]>
96
97 <{x | store(x)}: H[e sing :’store’],
98 H[e pl :’stores’]>
29
100 <{x | item(x)}: H[e sing :’item’],
101 Hle pl :litems’]>
102
103 <{x | item(x), x.name = $ci1}: O[e :’$c1’]1>")

31

