

Evaluating The PLUSS Domain Modeling Approach
by Modeling the Arcade Game Maker Product L ine

Koteswar Rao Kollu
(ens03kku@cs.umu.se)

June 21st, 2005
Master’s Thesis in Computing Science, 10 credits

Supervisor at CS-UmU: Magnus Eriksson
Examiner: Per Lindström

Umeå University

Department of Computing Science
SE-901 87 UMEÅ

SWEDEN

 A Thesis submitted in partial fulfillment of the degree for Masters in Computing Science

ABSTRACT

Most published approaches for software product line engineering only address the
software problems but not the systems problems. To tackle that problem the PLUSS
Domain Modeling approach has been introduced at system level for requirements
reuse within the systems engineering process. The PLUSS approach (Product Line
Use case modeling for Systems and Software engineering) is a domain modeling
method that utilizes Features, use cases and Use case realizations. An Arcade Game
Maker Product Line example is used to evaluate the PLUSS approach. In this
evolution the PLUSS notations for Feature Modeling and Use Case modeling are used
to identify the similarities and variations between the three game products of an
Arcade Game Maker Product Line. In this evaluation process some evolution criteria
were defined and graded according to them. The results show that the PLUSS
approach provides good overview of the domain with easily understandable
documentation when compared with some standard notations of domain modeling.
Hence the PLUSS approach is a good domain modeling approach and can be applied
on any domain which is in the software product line strategy.

 ii

 iii

Acknowledgements

I would like to thank Mr. Magnus Er iksson, who supervised my thesis
work with his advices and suggestions in the fulfillment of this thesis.

My special thanks to Mr. Per L indström, for giving an opportunity to
carry out my studies in Umeå University, Sweden.

 iv

 v

Table of Contents

1. Introduction..1
1.1 Problem Statement...1
1.2 Purpose..1
1.3 Methods...2
1.4 Arcade Game Maker Product L ine Example..2

2. Software Product L ines...4

2.1 Introduction to Software Product L ines..4
2.2 Product L ine Essential Activates..6
2.3 The dimensions of Product L ine:..7
2.4 Developing a Product line architecture..8
2.5 Product L ine Practice areas..9
2.6 Summery...10

3. Feature Modelling..10

3.1 Introduction to Feature Modeling..10
3.2 Feature Or iented Domain Analysis (FODA)...11
3.3 Feature-Or iented Reuse Method (FORM) ..11
3.4 Feature based Reuse-Dr iven Software Engineer ing Business
(FeatuRSEB)...12
3.5 Generative programming (GP)...14
3.6 Alexandr ia (Riebisch’s) Notation ...15
3.7 Jan Bosch’s notation..16
3.8 Summery...17

4. Unified Process...18

4.1 Rational Unified Process (RUP) ...18
4.2 Use Case Modeling...21
4.3 Rational Unified Process for Systems Engineer ing (RUP SE).............22

5 The PLUSS Approach ..24

5.1 Introduction..24
5.2 The PLUSS Feature Modeling..25
5.3 The PLUSS Use Case Modeling..26
5.4 The PLUSS approach to Modeling Var iants in Use Case Models27
5.5 The PLUSS Notation for Descr ibing Var iants in Use case
Specifications..27

6. The PLUSS Evaluation Results...28

7. Conclusion ...30

8. References..31

Appendix 1: Arcade Game Feature Diagram ..33
Appendix 2: Arcade Game Feature Model Descr iption................................33
Appendix 3: Arcade Game Use-Case Specifications......................................33

 vi

List of Figures:

Fig 1: Documentation road map of Arcade Game Maker Product L ine3
Fig 2: Essential Product line Activities ..6
Fig 3: Three decomposition dimensions of Software Product L ines7
Fig 4: Feature diagram FODA: Car system ...11
Fig 5: Feature categor ies ..12
Fig.6: Feature diagram FeatuRSEB: phone service system13
Fig 7: Example of a feature diagram in Generative Programming14
Fig 8: Feature Diagram with multiplicities: L ibrary system16
Fig 9: Feature diagram of a mail client system ...17
Fig 10: The Rational Unified process life cycle ..18
Fig 11: The system use-case model for Arcade Game Maker Product L ine........22
Fig 12: An example RUP SE Black box descr iption ..23
Fig 13: An example RUP SE White box step descr iption24
Fig 14: An example feature graph in the PLUSS notation25
Fig 15: Feature constructs vs. Multiplicities in PLUSS ...26
Fig 16: Blackbox flow of events used for descr ibing use case scenar ios26
Fig 17: Whitebox flow of events for descr ibing use case realizations...................27
Fig 18: The PLUSS Meta-model ..27
Fig 19: The PLUSS notation for descr ibing var iants in use case scenar ios28
Fig 20: The evaluation cr iter ia..29
Fig 21: The PLUSS approach evaluation graph ...29

 1

1. Introduction

Software reuse is the most promising approach to increase the productivity and
quality of software products [1]. In traditional software reuse, a library of reusable
code components was developed. Studies have shown that instead of reusing an
individual component, it is much more advantageous to reuse whole system design or
subsystem [1]. This leads the basic idea of Product lines. A product line is defined as
[3] “A set of systems that share a common and managed set of features satisfying the
specific needs of a particular market segment” . The basic idea of product line
approach is to use domain knowledge to separate the common parts of a family of
products from the differences between the products. One notation used for modeling
commonalities and variants with in system family is known as feature modeling [7].
Feature models are applied to describe variable and common properties of products in
a product line with an overview over requirements and differences between features.
Several feature models are used for development and application of software product
lines. Eriksson et al, introduced a use case driven approach for product line
development in [6, 7] known as the PLUSS approach. In this thesis, the PLUSS
approach is applied on a product line example, known as the Arcade Game Maker
Product Line [16]. The purpose of this was to evaluate how suitable the PLUSS
approach is for that particular domain.

This thesis report is divided into seven sections. In section 1 the problem addressed,
main goal of this thesis and introduction to the Arcade Game Maker Example are
described. Section 2 describes the framework on Software Product Lines and section
3 describes the concepts and several notations of Feature Modeling. The Rational
Unified Process for Systems Engineering and basics are discussed in section 4. The
concepts and notations of PLUSS approach is described in section 5. The results of
evolution are discussed in section 6 and finally section 7 gives the conclusion of this
thesis. The appendix 1 is the derived feature model for online Arcade Game Maker
Product Line example; appendix 2 is a description of that feature model and in
appendix 3 shows the scenarios for the Use cases and Change cases of Arcade Game
Maker Product Line example.

1.1 Problem Statement
The main goal of this thesis is to evaluate the domain modeling approach called ‘ the
PLUSS approach’ by applying it on the online Arcade Game Maker Product Line
example. The basic idea of Software Product Lines, Feature Modeling and Rational
Unified Processing for Systems Engineering (RUP-SE) were investigated to
understand the concepts and notations of the PLUSS approach. The architecture of the
Arcade Game Maker Product Line example and its related documents must be
reviewed to find out the relations and dependencies among products and its features to
apply the PLUSS notations. Finally with this experience the PLUSS approach is
evaluated with evaluation criteria and grades.

1.2 Purpose
The purpose of my thesis is to study the standard product line architecture for Arcade
Game Maker Product Line example and applying the PLUSS approach on it to derive
the standard feature model based on PLUSS notations by combining features and use

 2

cases of the Arcade Game Maker Product Line example and also to learn the basic
concepts of PLUSS approach and its application in a particular domain.

1.3 Methods
The following step wise methodology was used for the PLUSS evaluation process.

1. Initially I started with the literature survey of software product lines; feature
modeling, Rational Unified Process for Systems Engineering (RUP-SE) as
those are related to the PLUSS approach.

2. The Arcade Game Maker Product Line example and its documents were then
analyzed to find out the product line structure, number of products and each
product feature.

3. In this step the PLUSS approach and its notations were studied, with the basic
knowledge of software product lines, feature modeling and RUP-SE, made the
PLUSS notation easy to understand.

4. Later the PLUSS approach and its notations are applied on the Arcade Game
Maker Product Line example. In this process the existing feature model of
Arcade Game Maker Product line is re-structured according to the PLUSS
feature model notation. The relationships and dependencies are defined
between features. The use case scenarios and change case scenarios are used
for deriving the black box flow of events as shown in appendix 3. The use
cases were then structured around the feature model in accordance with the
PLUSS approach and features of the feature model are described for the
traceability purpose.

5. Finally, with the above experience the evaluation of the PLUSS approach has
done with the following evaluation criteria, with which several important
aspects of the PLUSS approach is examined and graded.
• Ease of Learning: The process of learning and understanding the concepts

and notations of the PLUSS approach.
• Richness of Notation: How well the notations of the PLUSS approach

describe the solution.
• Tool Support: How well the various MS-Office tools supported to draw

the feature diagrams and use case realizations of the PLUSS approach.
• Needed Modeling Effor t: The domain modeling knowledge to use the

PLUSS approach.
• Usefulness for Understanding the Domain: How easily a domain can be

understood by the analysts with the help of the PLUSS approach.

1.4 Arcade Game Maker Product L ine Example

As discussed in [16], the Arcade Game Maker product line is an example for
demonstrating and learning the concepts of software product lines. This product line
consist three simple arcade games Brickles, Pong and Bowling. These are based on
single system architecture. This example is used as a case study for implementing the
software product line approach. This case study is an estimation to the company that
implement the product line approach and provides a number of assets that are used in
the development of product line architecture.

Fig 1 provides an overview of the available documentation in the Arcade Game
Maker product line example. Each asset is described individually as follows:

 3

Fig 1: Documentation road map of Arcade Game Maker Product Line [16]

Business Case
This document provides an overview of adapting software product line strategy for
the products of a company. It also provides information on how a company can
achieve all the benefits of a product line approach and the impact of changes that
enable the hidden costs and benefits to the company to adapt product line approach.

Scope
This document describes the design and implementation decisions that are made
within the boundaries of product line. This document is useful for architects to find
reusable components of products in the product line and managers to manage the
product planning.

Requirements
One of the most important documents in any software product development, which
provides information to the analysts, stakeholders, managers and designers in all the
phases of development process. This document focuses on the functional and non-
functional requirements and their implementation process. In a product line approach
the functional requirements are derived by using the variability and commonality

 4

among products and its features. The feature model and use case scenarios are
developed using this document to address the requirements.

Architecture
This document is a route map to the implementation of products, which describes
modules and interface that is to be implemented for the total system development.
This document provides the risks, tradeoffs, sensitivities that are associated with the
development process.

Production Plans
This document provides the production strategy and core assets associated with
production. It also describes the product qualities.

System Test Plans
Every software product is tested to find-out faults of the system and to verify that
requirements are meet. This document provides the testing items and testing strategy.
Production teams use this document to test the products iteratively.

Concept of Operations (CONOPS)
This document used by product line organizations to make decisions and to manage
the production work, it describes the organizational and technical considerations.

Br ickles Product
This document contain all the information about brickles product like user’s manual,
system test plan, production plan, program executable and structure of product line
code for brickles product. The user’s manual contains the information about game
operation, rules and expected output. The product line code is the combination
individual packages of the product.

Pong Product
This document contains the information about Pong product, its user’s manual,
system test plan, production plan, product line code and executable version of Pong
product. The user’s manual contains information about game, its operation, rules and
expected output.

Bowling Product
This document contains the information like user’s manual, product plan, system test
plan, product line code and executable version of bowling product. The user’s manual
contains information about game, its operation, rules and expected output.

2. Software Product L ines

2.1 Introduction to Software Product L ines

According to [1], several approaches have been proposed to overcome the Software
crisis. During 1960s software systems was developed by integrating components and
in 1970s several module based approaches were proposed. With the introduction of
Object Oriented Programming in 1980s classes are used as units of reuse. All these
approaches only provide reuse at the individual level and in small-scale. As a result of

 5

this, Software Product Lines were introduced in early 1990’s by combining the
software architecture and component based software development.

The product lines strategy is widely used in the manufacturing industry since a long
time to raise the production capability and reduce time to market by designing a set of
products to have many parts in common. The Software Product Line development
strategy enables an organization to make optimal use of resources by setting up a
strategic platform for software development [17]. Under product line strategy a wide
variety of products are developed and maintained very efficiently. The Product line
practice in software development will increase the productivity and quality of a
software product with high levels of reuse. The planed selection of similar products
will boost the economic stability of a software development company. A software
product line is defined as:

“A software product line is a set of software intensive systems that share a common,
managed set of features satisfying the particular market segment or mission that are
developed from a common set of core assets in a prescribed way” [17]

In traditional software development each system is built individually, but where as in
software product lines a family of software systems are considered. Systems
developed with product line approach are capable of adapting to changes in
requirements during each iteration provided those changes must be in the same
domain of a product line. As discussed in [3], many organizations are realising that a
product line of software systems built from common set of assets could result in
increased market share, greater customer satisfaction, higher system reliability, and
lower the staffing requirements. This commonality enables the multiple kinds of
benefits for an organization and these are categorised as strategic business benefits,
engineering benefits and personal benefits. The strategic business benefits are reuse of
a multiple shared assets, including architecture, reusable components, schedules,
budgets, test cases, performance models, documentation, marketing plans and
literature. Apart from these, the other possible engineering benefits in production area
are, according to [11]:

• The average time to create and deploy a new product will reduce
• The average number of defects per product will be reduced
• The average engineering cost per product will go down because of the

reduction of engineering effort to deploy and maintenance of a product
• The total number of products will increase with effective management

The individual (personal) benefits according to [3] are:

• The CEO, benefits economically by capturing the new markets with large-
amount of productivity and better time to market.

• The COO, can easily manage the huge work force in an efficient way, can
easily allocate the employees among the various locations because of
commonality of the applications.

• The Technical Manager, benefits from the forecasting of schedules, roles
and responsibilities of the workforce.

 6

• The Software Product Developer, benefits the greater job satisfaction and
ease of schedules and more time to concentrate on current products and
new technology.

• The Architect or Core Asset Developer, can expertise the skills and greater
challenge in the job for designing the software that will be used for many
products.

• The Marketer leads the organization into greater profits by selling high
quality and more predictable delivery products.

• The Customer, benefits from the high quality of products with well tested
training materials and documentation. Predictable delivery date and lower
product cost with less maintenance costs.

• The End user, benefits better and easy learning materials, documentation

2.2 Product L ine Essential Activates
Before going to essential product line activities the core assets are defined as [17]:
“An artifact or resource that is used in the production of more than one product in a
software product line” . A core asset may be architecture, a software component, a
process model, a plan, a document, or any other useful result of building a system.
The domain of product line development involves core asset development and product
development using core assets. There is strong feed back connection between core
assets and the products. Core assets are refreshed as new products are refreshed.
Management plays a vital role to view new products is in the context of the available
core assets. The three essential activates (see fig: 2) are described individually as
discussed in [17]

 Fig 2: Essential Product line Activities [17]

 7

1. Core Asset Development
The main goal of core asset development activity is to provide a base for production
or products. The core asset developers provide a range of assets like architectures,
plans, specifications and implementations to the product developers. Plans include test
plans and production plans and templates for production development

2. Product Development
The product development activity depends on the requirements of a particular product
and the outcomes of core asset development. Requirements are expressed as delta
from set of product line requirements. Product line scope indicates when products can
or cannot be included in product line. Product plan gives details about how assets are
used to build products.

3. Management
The Management activities are divided into technical and organizational. Both levels
must be strongly committed to the software product lines. Technical management
manages the core asset development and the product development activities by
checking the groups that build core assets and products are engaged in required
activities. Organizational management can be defined as the authority that is
responsible for the ultimate success or failure of the product line effort.

2.3 The dimensions of Product L ine:
The concepts of software product lines are decomposed into three dimensions as
shown in fig 3:

 Fig 3: Three decomposition dimensions of Software Product Lines [1]

 The first dimension represents the primary assets that are part of the reuse-based
development i.e. Architecture, Component and System. The different views of an
organization describe the second dimension as Business, Organization, Process and
Technology. The third decomposition is based on the lifecycle of each of the assets in
the organization are Development, Deployment, and Evolution.

 8

2.4 Developing a Product line architecture
According to [1], the design phase of product-line software architecture contains six
basic steps, i.e.

Business case analysis
The primary aim of this step is to identify the benefits and hidden costs of adopting
product-line approach compared with presently used approach. The business case
analysis is done in four steps, starting with analysis of current situation in an
organization. Secondly, a prediction of future costs and benefits of current approach
are assumed. Thirdly the investment required to convert product line to be analyzed.
Finally the benefits and future costs of product line strategy are analyzed. The costs
and benefits can be pure financial figures, man hours, time or logical combination of
all.
Scoping
This activity is divided into several steps i.e. product selection, feature selection,
feature-graph specification, product-line scoping and the product-specific
requirements. All the above steps conclude with what are products and product
features that are to be included and excluded in product line from the starting.

Product and feature planning
The product and feature planning is an extension of scoping activity with
requirements related to the ease of incorporating predictable features and products.
This plan can be used by software architects to prepare the product line architecture
for future inclusion of other features.

Design of Product-line architecture
This is the main step in the process of developing software product-line architecture.
There are several approaches to design product line architecture. In product line
architectures the products are expressed using variability of the components. Every
architectural design consists three phases i.e. functionality based design, architecture
assessment and architecture transformation. Product specific features are to be
considered while designing product line architecture to maintain the quality of
product.

Component requirement specification
The goal of this activity is to specify the requirements specification for each
component. The requirements specification contains several aspects that are to be
defined with each component are interfaces, functionality, quality attributes and
variability.

Validation
It is important to verify the product-line architecture with the requirements of the
stakeholder before developing components. This can be done by meeting with
stakeholder or by architecture assessment teams to identify weakness in software
architecture for an individual product or a product-line.

 9

2.5 Product L ine Practice areas

The Software Engineering Institute has identified 24 practice areas as skills that are
need for an organization to adopt the product line strategy. A practice area is defined
as “A body of work or a collection of activities that an organization must master to
successfully carry out the essential work of a product line” [17].
Practice areas provide starting points from which organizations can make progress in
adopting a product line approach for developing software products. These practise
areas loosely divided into three categories, as stated below.

1. Software Engineering practice areas
2. Technical Management practice areas
3. Organizational Management areas

Software Engineer ing practice areas
These practise areas are necessary for an application of suitable technology to the
creation and evaluation of the core assets and products.

• Architecture definition
• Architecture Evaluation
• Component Development
• COTS Utilization
• Mining Existing Assets
• Software Systems Integration
• Testing and
• Understanding Relevant Domains.

Technical Management practice areas
Technical management practice areas are carried out in the technical activities
represented by the core assets and product development parts.

• Configuration Management
• Data Collection, Metrics, and Tracking
• Make/Buy/Mine/Commission Analysis
• Process Definition
• Scoping
• Technical planning
• Technical Risk Management
• Tool Support

Organizational Management practice areas
These practice areas are necessary for the orchestration of the entire product line
effort and these practice areas are concerned only with the management.

• Building a Business Case
• Customer Interface Management
• Developing an Acquisition Strategy
• Funding

 10

• Launching and Institutionalizing
• Market Analysis
• Operations
• Organizational Planning
• Organizational Risk Management
• Structuring the Organization
• Technology Forecasting
• Training

2.6 Summery
As software industry is growing rapidly the generation of similar application systems
in a domain are made easy and cost effective with the help of software product line
architecture. Successful product line architecture involves the systematic management
of planned variations across the product line. The commonality permits the reuse of
assets in key areas like architecture, schedules and budgets, test case, marketing plans,
literature, training and documentation. The software product line strategy is composite
of software engineering aspects of product production with organizational and
technical management and many number of practice areas are derived to ease the
adaptation of product line process for many organizations.

3. Feature Modelling

3.1 Introduction to Feature Modeling

The introduction of the software product-line approach enabled development of huge
and multiple software applications with high levels of software reuse. Domain
analysis techniques were proposed to reduce the risk of developing inappropriate
software because of unknown future requirements. Domain analysis reduces the risks
by analyzing concepts, properties and solutions of a domain. Feature models are used
in domain analysis to provide an overview over the requirements. In domain modeling
the common and variable requirements for software systems are described as
instances of a product line. A Feature model contains a feature diagram and some
additional information, such as relationships and dependency among product features.
A feature model also shows the functionality that can be selected when building new
systems in the domain. Feature models provide an abstract and syntax for expressing
commonality and variability in the domain. The feature model resides between
requirements model and design model [19].

Feature Diagrams
A feature diagram is a hierarchical decomposition of features with the indication of
feature types. A feature diagram constitutes a tree composed of root, nodes and
directed edges. The root represents a concept and the rest of the nodes represent
features. Edges connect concept with its features and a feature with its sub-features.
Feature diagrams describe relations between various requirements and distinguish
between common and variable characteristics of a concept. The concept refers to a
property of a product or domain. A feature can be included in a concept instance only
if a parent has been included. Feature diagrams are important product of domain
analysis in product line strategy.

 11

A number of notations have been proposed in the literature, examples are FODA [12],
FORM [13], FeatuRSEB [8], Generative Programming [4], ALEXANDRIA [20] and
Jan Bosch’s [2] notation.

3.2 Feature Or iented Domain Analysis (FODA)
The first feature notation FODA, method, was introduced in 1990. According to [12],
“A feature is a prominent or distinctive user visible aspect, quality or characteristic of
a software system or systems”

Feature Oriented Domain Analysis (FODA) is a domain analysis and engineering
technique which focuses on developing reusable core assets for multiple products in
the domain. Domain analysis is “ the process of identifying, collecting, organizing and
representing relevant information in a domain based on the study of existing systems
and their development history” [12].
FODA feature models describe mandatory, optional and alternative properties of
concepts within domain. A filled circle at the top of the feature identifies a mandatory
feature. A mandatory feature must be selected in all the systems of a domain. An
empty circle at the top of the feature identifies as optional feature. Optional features
are only present in the application if the customer has chosen them. An arc spanning
two or more edges of the feature nodes depicts as set of alternative features. The term
alternative feature indicates that a system can possess only one sub-feature at a time
for main feature. As shown in fig 4 the example of car feature model, transmission
and horsepower are mandatory and must be selected, where as air conditioning is an
optional feature. The transmission has two alternatives in which one must be selected
either manual or automatic for an instance of transmission.

 Fig 4: Feature diagram FODA: Car system [12]

3.3 Feature-Or iented Reuse Method (FORM)
The FORM [13] is the prolonged study of FODA method. FORM starts with an
analysis of commonality among the applications in a particular domain. In the FORM
product features are identified and classified in terms of Capabilities, Domain
technologies, Implementation techniques and Operating environments as shown in the
fig 5. Capabilities are end user-visible characteristics and can be identified as System
services, Operations and Non-functional characteristics that are specified by the
customer. Domain technologies are domain specific methods and problem solutions
that are used by domain experts to represent the way of implementing services.
Operating environments represent an environment in which the applications are
operated like hardware environment and software environment. All the components of
the system with their interfaces and protocols are part of this category.

 12

Implementation techniques are general problem solutions in which domain functions,
services and operations are implemented.

Fig 5: Feature categories [14]

In FORM the common features in different products are mandatory features, variable
between different products are named as optional or alternative. Optional features
represent selectable features for products in the domain. In alternative features only
one feature is selected for an instance. The generalization /specialization relationship
can be used when features are generalised with sub-features. When one feature is
directly depend on other future the “ implemented-by” relationship is used to represent
those two features.

3.4 Feature based Reuse-Dr iven Software Engineer ing Business
(FeatuRSEB)
FeatuRSEB [8] is the integration of FODA [12] and Reuse-Driven Software
Engineering Business (RESB). The RSEB is a use-case driven systematic reuse
process. In RSEB, a use case and analysis object model is used to describe system
architecture and context. In RESB the variability is captured using explicit variation
points and variants. The RSEB method uses features informally; features are related
to use cases or parts of use cases. Unlike FODA, RSEB provides no explicit feature
models that construct and transform such feature models. As discussed in [8], the
feature model construction process can be outlines as:

1. Merge individual use case models into a domain use case model, capture and
express the differences by using variation points.

2. Create an initial feature model with functional features derived from the
domain use case model.

 13

3. Create the RSEB analysis object model, augmenting the feature model with
architectural features.

4. Create the RSEB design model augmenting the feature model with
implementation features.

The example shown in fig 6, of the feature model for Rapid Telephone Service
Creation, illustrates the major relationships in the FeatuRSEB feature model.

 Fig.6: Feature diagram FeatuRSEB: phone service system [8]

The above shown features can be specified by using the following notations
1. The composed_of relationship: A feature can be modelled as composed of
several sub features. For example in fig 6, the feature “phone service” is composed of
“exchange”, “ type” , “dialling mode”, “billing” , and “ line quality” . This relationship is
represented by a line from super-features to each of its sub-features.
2. The existence attribute:

�
etermines whether a feature is mandatory or optional.

An optional feature represented with circle about the feature name.
3. The alternative or XOR relationship: A feature can act as variation point (vp-
feature) in the model and other features can be defined as variants. In the example the
feature “exchange” is a vp-feature with “PBX” and “ individual” as variants. Only one
of them is selected and these features bind at use time. A variation point is represented
with a diamond under its name. A line is drawn to each available variant from the
diamond.
4. The OR-relationship: Defines a feature as a variation point and other features as
its variants from which one or more joined. A variation point feature is represented by

 14

a black diamond under its name. A line is drawn to each available variant from
diamond.

3.5 Generative programming (GP)

Generative Programming is defined as “A software engineering paradigm based on
modelling software system families such that, given a particular requirements
specification, a highly customised and optimized intermediate or end-product can be
automatically manufactured on demand from elementary, reusable implementation
components by means of configuration knowledge”[4].

As described in [4], the feature model in GP defines the scope and configurability
aspect of a system family and provides the configuration knowledge needed to
automate the production of family members. The GP-feature diagram slightly extends
the FODA notation with or-features. A mandatory feature is included in the
description of a concept instance if and only if its parent is included in the description
of the instance. A mandatory feature is represented with a simple edge ending with a
filled circle. An optional feature may or may not be included if the parent is included.
An optional feature node is represented with a simple edge ending with an empty
circle. An alternative feature is a feature from a set of features from which only one
can be chosen if the parent of a set of alternative feature included. An or-feature is the
nodes of a set of alternative features are pointed to by edges connected with a filled
arc. A feature may have one or more sets of direct or- sub features. An or-feature can
also be an optional.

Fig 7: Example of a feature diagram in Generative Programming [22]

The example of feature diagram fig 7, describes a part of dialog window. The root
represents the dialog concept and the other features as described as:

 15

Mandatory features: Every dialog has the common buttons
Alternative features: A dialog window may support either English or German
languages
Or-features: A dialog window may have an Ok button, Cancel button or both.

3.6 Alexandr ia (Riebisch’s) Notation
This notation has been introduced to prevent the ambiguity and to refine the relation
between features of Generative Programming. Alexandria is methodology for
developing and evolving software product lines and developed by Reibisch et al [20].
In this notation feature diagrams are extended with UML multiplicities and are
defined between neighbouring features of a feature diagram.

Multiplicity Definition
0..1 at most one feature has to be chosen from the set
1 exactly one feature has to be chosen from the set
0..* an arbitrary number of features (or none at all) have to be chosen from

the set
1..* at least one feature has to be chosen from the set
n..* n number of optional features can be selected

As discussed in [20], the fundamentals of this notation are:

• A feature is a node in a directed –acyclic graph.
• Relations between features are expressed by edges between features. A circle

at the end of its corresponding edge determines the direction of a relation.
• If this circle is filled, then the relation between features is said to be

mandatory, i.e. when the feature at the relation’s origin is chosen, the feature
at the relation’s destination has to be chosen, too.

• If the circle is empty, the relation is non-mandatory i.e. the features at the
relation’s destination need not to be chosen, it is optional.

• Optional relations that originate from the same feature node can be combined
into a set. Each relation can only be part of one set.

• A set has a multiplicity that donates the minimum and maximum number of
features to be chosen from the set. The possible multiplicities are: 0..1, 1, 0..n,
1..n and n..* . Visually a set is shown by an arc that connects all the edges that
are part of the set. The multiplicity is drawn in the center of the arc.

• Relations between features those are not located in the adjacent parts of the
graph shown separately because of the clarity of the diagram. Such relations
can be described in a textual form by using subset of UML Object Constraint
Language (OCL) [20].

The following example shown in fig.8 is a feature diagram of a Library system in the
Alexandria notation. Three features with sets were identified in the library system
family.
First set is managing books with different items like Book, Journal and/or Audio
book. At least one of these items must be managed by the system otherwise no
customer can borrow books from the library. In the second set, if the customer wants
to borrow a book, he has to identify himself to the librarian either by using a chip card
or biometric way (fingerprint check). When developing the system one of the two
alternatives has to be chosen. The third set is customer’s data, every time a new

 16

customer registers himself at the library and is required to authenticate himself to the
librarian if he has lost his chip card or wants to prong his book by phone.

 Fig 8: Feature Diagram with multiplicities: Library system [20]

3.7 Jan Bosch’s notation
According to [2], a feature is defined as “a logical unit of behaviour that is specified
by the set of functional and quality requirements” .
This notation is slightly different from FeatuRSEB [8] notation, with the addition of
binding times and external features. In this notation:

• Features are represented by rectangle (like in FORM)
• External features are represented by dotted rectangle.
• A composition construct is used to group related features.
• The alternative or XOR-relationship is represented by a non-filled triangle
• The OR-relationship is represented by black-filled triangle

The example feature diagram of a mail client system is shown in fig 9 and the features
are categorised as following [2]:

External features
These features are not direct part of the system but offered by the target platform of
the system. These features are essential because system uses and depends on them.
For example in the mail client system, “TCP Connection” is essential to connect to
other computer but not a part of client requirement.

Mandatory features
These are the features that identify a product, for example in an email client system;
“Type in Message” is a known feature to type text and send as email.

 17

Fig 9: Feature diagram of a mail client system [2]

Optional features
These features are embedded with some core features and optional, for example in
email client system “Signature file” are optional and can be used by any user who
wishes to send signature with each email.

Var iant features
A variant feature is an abstraction for a set of related features (optional or mandatory).
For example in email client system, client may use and configure any kind of editor to
type and edit text.

3.8 Summery

With the introduction of the first feature model notation by Kang et al. in FODA [12],
feature models made it easy for stakeholders to understand the abstract view of the
product family with feature descriptions. Since then feature models are used to define
the products and product configurations with the addition of new products to the
existing software product line architecture. A feature model provides an overview
over requirements, dependencies and relations between features. The feature
modelling is used to model the differences between commonality using variable
properties of a product line. FODA [12] notation is clear and easy to understand but it
does not have enough expressiveness to explicitly represent variation points [9]. The
four layers of FORM [13] describe different views related to the product
development, but it generates the complexity when large number of variants
represented. FeatuRSEB [8] is the first idea to combine both features and use cases to
explicit representation of variation points. In GP [4] the or-features are described as
alternative-optional features, but the relations between features leads to ambiguity
[20]. In Reiebish’s notation [20] the feature diagram is more simplified but the
variation points not explicitly defined even if cardinalities can be identified. Finally

 18

J.Bosch’s notation [2], replaces the non filled and black filled diamond of FeatuRSEB
[8] with XOR and OR relationships.

4. Unified Process

4.1 Rational Unified Process (RUP)

According to [10], The Unified Process is a component based software development
process. The Unified Process uses the Unified Modeling Language (UML) for
preparing software system blue prints. The Rational Unified Process (RUP) is a
commercial instance of the Unifies Process which is developed and maintained by the
IBM-Rational Corporation.
According to [15] The RUP is a software engineering process that would improve the
productivity of software development for larger software systems. The goal of RUP is
to produce high quality software with specified end user requirements in predictable
schedule and budget. The Rational Unified Process attempts to improve the team
productivity by providing access to the knowledge base for every team member. The
RUP supports various visual modeling, programming, and testing tools. The RUP
activities create and maintain models. A model is a set of plans that describe the
complete system from a particular perspective. In RUP, one development cycle is
described in two dimensions as shown in the below Fig 10. The horizontal axis
represents the time and dynamic aspects of the process and it is represented in phases,
iterations, milestone and cycles. The vertical axis represents the static aspects of the
process. In this view the process is described in activities, artifacts, workers and
workflows. A phase is defined as a time span between two major milestones in the
software development process. A milestone is “A point in time at which certain
critical decisions will be made” [15].

Fig 10: The Rational Unified process life cycle [15]

The RUP divides one development cycle in four consecutive phases. Each phase of
the RUP can be further broken down into iterations. An Iteration is “The complete

 19

development loop resulting in a release of an executable product, a subset of the final
product under development, which grows incrementally from iteration to iteration to
become the final system” [15].

Inception phase
In this phase the scope of the project is defined and business case is developed for the
system. The scope of the project includes identifying all use cases and specifying
most important ones with actors. The business case includes risk assessment, success
criteria, resource estimation and duration of the phase plan.

Elaboration phase
This is the most critical phase among all phases. It includes analysis of domain
problem, development of the project plan, specifying features, and an executable
architecture is developed in one or more iterations depending on the risk, scope, size,
and novelty of the project.

Construction phase
During this phase remaining components and application features developed and
integrated into product. All features are tested thoroughly finally in this phase product
is build.

Transition phase
The software product is transitioned to the user community. This phase focuses on
the activities required to place the software into the hands of the users. The activities
include beta releases, general availability releases, several iterations and enhancement
releases.

The RUP is represented using four primary modeling elements: Workers, Activities,
Artifacts and workflows explained each below.

Workers
A worker defines the behavior and responsibilities of an individual or a group of
individuals working together as a team.

Activities
An activity is performance of workers when executing tasks. Every activity is
assigned to a specific worker.

Ar tifacts
Artifacts are the outcomes of the activities and an artifact is a piece of information
that is produced, modified, or used by a process.

Workflows
 A workflow is a sequence of activities that produces a result of observable value.

In RUP all workers and activities are divided into six core engineering workflows and
three core supporting workflows as shown in fig 10.

Business Modeling

 20

In this discipline the scope of the system and its business context is modeled in
business use cases. Common modeling activities include a context model, and a
business process model. Often these activities are modeled in data-flow diagram or
activity diagrams. The RUP provides common language for both business engineering
community and software engineering community.

Requirements
In this core discipline functional and non-functional requirements are engineered,
which includes identification, modeling and documenting requirements. Actors and
Use cases are identified representing the users and system behavior. The use case
description shows how the actors interact step by step with system and what the
system does. Non-functional requirements are described in supplementary
specifications.

Analysis and Design
The goal of this discipline is to show how system will be realized in the construction
phase. The design model and optionally an analysis model are the outcomes of this
discipline. The design model is used as a blue-print for source-code development. The
Design model contains design packages and design subsystems with well defined
interfaces. Finally the design activities are combined to build robust system
architecture based on client requirements.

Implementation
 In this discipline Classes and objects are implemented in terms of subsystems and
components. Components are structured, tested and integrated into executable
subsystems.

Testing
The process of testing is done in an iterative way throughout the project development,
which allows finding defects as early as possible. The purpose of testing is to verify
correct interaction between objects, to verify the implementation of all requirements
and proper integration of all components. Testing is carried along three quality
dimensions like reliability, functionality, application performance and system
performance.

Deployment
The goal of the deployment discipline is to produce a successful product release. This
includes activities: Like packaging the software, distributing the software, installing
the software and providing help to users. All these deployment activities are centered
on the transition phase.

Configuration and Change Management
This discipline describes how to control artifacts produced by many people who work
on a common project. It also describes how to manage parallel development done at
multiple sites and how to automate the build process.

Project Management
Software project management is a key discipline for managing risk, and successful
delivery of products to customers and users in their prescribed way [15]. This process

 21

is made easy by providing a framework for management risk and practical guidelines
for planning, staffing, executing and monitoring projects in RUP.

Environment
The software development organization must provide the software development
environment like processes and tools that are necessary to support the development
team.

4.2 Use Case Modeling

As discussed in [18], Use case modeling is used primarily to capture the high level
user- functional requirements of a system. A use case diagram shows a set of use
cases and actors with their relationships UML modeling. A use case is a.
 “Sequence of actions and variants between the system and the actors with their
relationships” . [10]
An actor is an external entity typically a user or another system, that interacts with a
system by means of sending and receiving messages. An actor is depicted as a stick
figure on a use case diagram. A primary actor triggers the system behavior in order to
achieve a certain goal and a secondary actor interacts with the system but does not
trigger the use-case. The system is depicted as a box and a use case is depicted as an
ellipse inside the box. The use cases provide common understanding between
developers, domain experts and end users [10]. Use case descriptions include the
information related actor actions and system response in the form of scenarios. A
scenario is “a specific sequence of actions that describe the behavior of a use-case at
one instance” . The main success scenario contains the sequence of actions that lead to
successful completion of a goal. The sequences that may lead to the goal are
described as alternate scenarios. The sequences that lead to failure in completing the
goal are described as exceptional scenarios. A complete set of use cases specifies all
the different ways to use the system. Use cases are useful in scoping, estimating,
scheduling and validating the effort [18].

As mentioned in [18], three kinds of relationships have been defined between use
cases: Dependency, Association and Generalization. The participation of an actor in a
use case is known as “association” , i.e. instances of the actor and instances of the use
case communicate with each other. The generalization is defined as “a taxonomic
relationship between a more general element and a more specific element that is fully
consistent with the first element” [18]. Generalization is described between one or
more actors, as a solid line from child to parent with open arrow head. Dependencies
are use relationships between use cases. The other relationships between uses cases
are the “extend” and “ include” . An extend relationship describes the extension of
base use case to other use case; an instance of the other use case is included in the
base use case provided the specified conditions are fulfilled. The extend relationship
includes a condition for the extension and a reference to an extension point in the
target use case. The include relationship provides explicit and unconditioned
extensions to a use case; this means the behavior of included use case is inserted into
base use case without any conditions. The below fig 11 shows the example use case
diagram of an Arcade Game Maker Product line.

 22

In which the actor game installer inherits all the properties of game player with two
additional use cases. The ‘play game’ use case applies to all games. The include
relationship between ‘play pong’ use case and ‘ initialization’ use case shows some
kind of dependency i.e. the ‘play pong’ is a base use case which uses the services of
‘ initialization’ use case.

 Fig 11: The system use-case model for Arcade Game Maker Product Line [16]

4.3 Rational Unified Process for Systems Engineer ing (RUP SE)

The RUP SE is an extension of RUP, developed specifically for addressing the needs
of the systems engineering process. Systems engineering is “an interdisciplinary
approach and means to enable the realization of successful systems” [5]. A system
engineering process requires set of activities that are necessary to define the system
architectural elements and their requirements. The RUP SE helps to unify the entire
system design and development team and also improves the communication and
collaboration between team members. The RUP-SE supports the large scale systems
composed of software, hardware, workers and information components. In RUP SE
system requirements are described two ways functional and non-functional, use case
diagrams are used to describe the functional requirements and the other is non-
functional requirements are scalability, performance, reliability and capacity etc. In
order to derive the system requirements systems can be viewed in two different
perspectives.

Black box perspective: In this the system is considered as whole.
White box perspective: The elements or parts that make up the system.

 23

In RUP SE [21], the activity of deriving functional requirements for a system and its
elements is called “Use-Case Flowdown”. This flowdown can be applied at analysis
level to identify sub-system level and to break sub-systems into further sub-systems.
The outcomes of this activity are:

• A Use-case survey for subsystems
• A survey of hosted sub-system use case for localities
• A survey of realized subsystem use case for processes

The locality is an engineering viewpoint diagram, in which system is decomposed
into elements and the localities are a collection of these elements that can host
processing.
In this activity, first architecturally significant use-cases are identified. For each
chosen use-case, the flow of events is developed to describe the interactions between
the system actors and the system. The systems responses to the actions of actors are
depicted as “blackbox” flow of events. Each black box step is shown along with
performance requirements known as “blackbox budget requirements” . Below fig12
shows the sample of flow of events for making a sale in retail store.

 Fig 12: An example RUP SE Black box description [6]

In the second step, the Object Oriented Analysis and Design techniques are applied to
identify the subsystem and the process models. In the third step the subsystem,
locality and process models are used to revise the flowdown activity to define how the

 24

analysis elements participate in carrying out the use cases. The specification of these
design elements is called as “whitebox flow of events” . The first Blackbox step in the
fig12 is decomposed into three Whitebox steps, as shown in below fig 13.

 Fig 13: An example RUP SE White box step description [6]

The purpose of subsystem whitebox steps is to illustrate how the subsystems
collaborate to carry out each blackbox step. The final step in RUP SE is to determine
the subsystem use cases. This process is carried out by sorting and organizing the
whitebox steps associated with each subsystem according to the relation between
them.

5 The PLUSS Approach

5.1 Introduction
The PLUSS [7] (Product Line Use case modeling for Systems and Software
engineering), is a domain modeling approach proposed to address the systems
requirements, and requirements reuse at system level especially in embedded software
product line development. The idea of the PLUSS approach is to combine use cases
and features into integrated model that provide a high level view of the system family
and to reduce the risks associated with two separate models for use cases and features.
The PLUSS approach uses features, use cases and use case realizations to identify and
modeling the requirements. According to [7], the PLUSS approach is based on the
work by Griss et al. on FeatuRSEB [8]. In PLUSS approach a feature model is used as
a tool to visualize the variants in a system family use case model. In PLUSS one
complete use case model is maintained for the whole system family to provide good

 25

overview of dependencies within the model. The notations used in the PLUSS
approach are easy to understand and easier to find the information about the domain.

5.2 The PLUSS Feature Modeling
As discussed in FODA [12], a feature is described as “A prominent or distinctive
user-visible aspect, quality or characteristic of a system”. In PLUSS feature model,
the top of the tree, root represents a concept or domain and reaming nodes represent
the sub concepts. In PLUSS approach feature types are described as “Mandatory” ,
“Optional” and “Alternative” features as in FODA with relations “ requires” and
“excludes” among the features. In addition to that a new feature type is defined to
represent the “atleast-one-out-of-many” relation called “Multiple adaptor features” ,
which is similar to FODA’s alternative features.
The mandatory features are included in all the systems built with in the family and
optional features are may or may not be included in products and represent the
variability with in a family of products. The alternative feature represents “exactly-
one-out-of –many” selection among set of features and hence named as “Single
adaptor feature” . The “ requires” relation indicates the dependency of one feature on
other to make a complete system. An “excludes” relations shows that both features
cannot be included in the same system. Mandatory features are represented with filled
black circle and a non-filled circle represents the optional feature. Single adaptor
feature represented with ‘S’ and multiple adaptor feature represented with ‘M’ , both
surrounded by a circle. The example of PLUSS feature model is shown in fig 14.

 Fig 14: An example feature graph in the PLUSS notation [7]

 26

To model the multiplicities several constructs are defined in the PLUSS approach as
shown in fig 15. Multiplicity ‘ * ’ represents the total number of features included in a
set.

 Fig 15: Feature constructs vs. Multiplicities in PLUSS [7]

5.3 The PLUSS Use Case Modeling
In the PLUSS approach the use case scenarios are described in natural language using
the “Black Box Flow of Events” notation described in Rational Unified Process for
Systems Engineering (RUP-SE) [21]. The tabular notation is shown in below fig 17.

Stop Actor Action Blackbox
System Response

Blackbox Budget
Requirements

1 This use case
begins when the
Actor…

The System… It shall…

2 …. … …
3 The use case

ends when….
…. ….

 Fig 16: Blackbox flow of events used for describing use case scenarios [7]

This notation possesses two advantages over the traditional natural language scenario
descriptions. That is it encourages the analysts to think about interfaces as it provides
separate fields for actors action and system response and provide strong relation
between non-functional requirements and blackbox budget requirements. The use case
realizations are described using RUP-SE “White Box Flow of Events” as shown in fig
17. The use case realizations help the system designers to analyze how a use case is
realized in terms of designing elements. The use case modeling notations of the
PLUSS approach is easy to write and provides a good overview over functional and
non-functional requirements of a system and software engineering.

Whitebox Action Whitebox Budget
requirements

Design Element_1… It shall….
Design Element_2… ……
Design Element_3… ….
…. ….
… ….

 27

 Fig 17: Whitebox flow of events for describing use case realizations [7]

A change case creates an impact on traceability to the variants if a change case
implemented. A change case is basically a use case that specifies anticipated changes
to a system. In PLUSS approach a change cases are used to differentiate between
present and future views of a system

5.4 The PLUSS approach to Modeling Var iants in Use Case Models
The variability management is a key concept of maintaining one complete and
common use case model for the whole product family. In PLUSS approach four types
of variants are identified and modeled. In PLUSS approach features and use cases are
mapped as “many-to-many” relationship so that one feature model contains several
user cases and one use case contains several features. A meta-model is proposed in
the PLUSS approach used to integrate features, use cases and use case realization and
also describes how use cases, use case scenarios and use case scenarios steps are
included with features selections. The PLUSS meta-model is shown in the below fig
18.

 Fig 18: The PLUSS Meta-model [7]

5.5 The PLUSS Notation for Descr ibing Var iants in Use case Specifications
In PLUSS approach, the variants in Use case Specification are described in step
identifier flow [7].

1. A step with number 1, identified as mandatory step in the scenario.
2. A number of alternative steps for one mandatory step identifies as several

steps with same number. These steps must be related to a set of single adaptor
features with a mandatory parent in the feature model, but exactly one step
must be selected for a mandatory step.

3. Several steps identified with same number and consecutive letter are related to
a set of multiple adaptor features with a mandatory parent of step 1. At least

 28

one must be selected out of several multiple adapter features for a mandatory
parent step.

4. A step identified by a number within the parenthesis as optional step in the
scenario.

5. Several steps with same number and consecutive letter are identified as
number of alternatives for one optional step in the scenario out of which at
least one step must be selected. These steps are related to set of multiple
adaptor features for one optional feature in the feature model.

6. Several steps identified with same number within parenthesis with a number
of mutually exclusive alternatives for one optional step in the scenario, in
which exactly one must be selected. These steps must be related to set of
single adaptor features with an optional parent feature in the feature model.

In PLUSS the global and local parameters are denoted with ‘@’ and ‘$’ respectively.
The scope of a global parameter is the whole domain model; where as the scope of
local parameter is defined within the use case. The following fig 19 shows the
example use case scenario description with variants.

 Fig 19: The PLUSS notation for describing variants in use case scenarios [7]

6. PLUSS Evaluation Results
As a result of the evaluation process of the PLUSS approach on Arcade Game Maker
Product Line example, a feature model was developed as shown in appendix 1. The
feature model and use cases of Arcade Game Maker example are described to provide

 29

the traceability to the variants in the domain, as shown in appendix 2. The blackbox
flow of events for use cases and change cases of Arcade Game Maker example are
shown in appendix 3. The main purpose of this evaluation was documenting the
problems associated with the PLUSS approach. The evaluation criteria are defined
with the following five evaluation constraints and compared with original
documentation available for Arcade Game Maker Product Line [16] the following
grades as shown in below fig 20. During this evaluation process I found difficulties in
identifying the feature types and its dependency, because I don’ t have the domain
knowledge and product line designing experience. This evaluation is carried out with
reference from the original documents of Arcade Game Maker Product line that are
available at [16]. The documents of the PLUSS approach give detailed information
about each element that should be taken care on designing phase.

 Evaluation Cr iter ia Grades
1 Ease of Learning 4
2 Richness of Notation 5
3 Tool Support 3
4 Needed modeling effort 4
5 Usefulness for

Understanding the Domain
4

 Fig 20: The evaluation criteria

The grades are given with reference of some standard modeling approach as shown in
fig 21.

Evaluation Criteria Graph

0

1

2

3

4

5

0 1 2 3 4 5

Criteria

G
ra

d
es PLUSS Approach

Standard Approch

 Fig 21: The PLUSS approach evaluation graph

Ease of Learning
The basic knowledge of software product lines, feature modeling and RUP-SE made
it easy for me to learn the concepts of the PLUSS approach. The feature modeling and
Use case modeling in the PLUSS approach is similar to the previous approaches with

 30

some in-depth study. The working knowledge of PLUSS meta-model needs some
domain knowledge to identify the variants in use case models.

Richness of Notation
The notations used in the PLUSS approach are easy to understand as one complete
common use case model is maintained with integrated features of Arcade Game
Maker Product Line. The feature types of the PLUSS approach made easy to derive
the common and variable features. The relations ‘exclude’ and ‘ requires’ describe the
dependency among features. The black box flow of events and white box flow of
events are used to describe use case scenarios and use case realizations. The notations
address the better variant behavior along with commonality than any other approach
and these notations can be easy to understand even without the software engineering
knowledge.

Tool Suppor t
As I don’ t have access to the commercial tools, I used some available tools in MS-
Office suit. I am successfully drawn the feature model for Arcade Game Maker
example. The problems associated with these tools are generating reports and tracing
variants between models is not automated.

Needed Modeling Effort
I am successfully did the modeling of Arcade Game Maker product line example even
without much domain knowledge and experience in modeling software product line
architecture. But a person with proper domain modeling knowledge can easily use the
PLUSS approach, when compared to some standard approach the PLUSS approach
needs less effort.

Usefulness for Understanding the Domain
The documents of the PLUSS domain modeling approach provide the detailed
information about the domain of Arcade Game Maker product line. These documents
are written in natural language so that even a person without software knowledge can
understand. One common use case model provides the total view of Arcade Game
Maker and its domain.

7. Conclusion
To gain the benefits of a software product line strategy the software development
organizations must select similar products and concentrate on their future
requirements. A good evaluated approach for modeling the products under product
line architecture plays a vital role. An approach said to be a good one when it can
identify and derive all the elements that are needed for best product line architecture
like use case scenarios, use case realizations, types of features, relationship among
those features, predictable future requirements, traceability among variants and
various parameters of a domain.

The PLUSS approach address several of those elements that are needed in the
designing phase. The resulting models of Arcade Game Maker example provided
good overview and easy way to find the information about the Arcade Game Maker
domain. The specifications of use cases and change cases provide the exact and clear
information to the designers to make good system architecture. The common model of
the PLUSS approach for various products in the domain save the time and cost to the

 31

company. The PLUSS approach is good tool for early cost estimations and provides
high levels of reuse. Even though the PLUSS approach may have some drawbacks,
but I couldn’ t find any may be because the domain of Arcade Game Maker is smaller
and the games are not yet implemented commercially. Hence I would suggest the
PLUSS approach as good domain modeling tool for only when use cases are used as
use case driven approach product line development.

8. References

1. Bosch, J.: Design and use of Software Architectures, Addison -Wesley (2000)

2. Bosch, J., J. V. Gurp, and M, Svehnberg: On the Notation of Variability in
 Software Product Lines, In Proceedings of working IEEE/IFIP Conference on
 Software Architecture (WICSA’01), 2001
 http://www.cs.rug.nl/~bosch/papers/SPLVariability.pdf (2005-02-21, 20:44)

3. Clements. P, Northrop. L.; Software Product Lines, Practices and Patterns,
 Addison-Wesley, (2002)

4. Czarnecki, K., Eisenecker, U.W.: Generative Programming. Addison -Wesley,
 2000

5. Canter. M., Principal Engineer, Rational Brand Services, IBM Software
 Group Introducing RUP-SE version 2.0, Available at: (2005-03-23, 14:20)

http://www-
106.ibm.com/developerworks/rational/library/content/RationalEdge/aug03/f_rups
e_mc.pdf

6. Eriksson M., Bösler J., Borg K.: Marrying Features and Use Cases for Product
 Line Requirements Modeling of Embedded Systems, Proceedings of Fourth
 Conference on Software Engineering Research and Practice in
 Sweden (SERPS’04), Available at: (2004-11-10, 15:30)
 http://www.cs.umu.se/~magnuse/papers/ErikssonSERPS04.pdf

7. Eriksson M., Bösler J., Borg K.: The PLUSS Approach- Domain Modeling
 with Features, Use cases and Use case Realizations. To appear in the proceedings
 of the International Software Product Line Conference (SPLC’05) 2005.

8. Griss. M. L., J. Favaro, M. D’ Alessandro, Integrating Feature Modeling with
 RSEB. In Proceedings of the Fifth International Conference on Software Reuse,
 Vancouver, BC, Canada, 1998 (76-85)

9. Heymans P., Trigaux. J. C.: Modeling Variability Requirements in Software
 Product Lines: a comparative survey. (2003)

10. Jacobson, I., Rumbaugh, J., Booch, G.: The Unified Modeling Language User
 Guide, Addison – Wesley, 1998

 32

11. Krueger C. W.: PhD, CEO, BigLever Software, Available at:
 http://www.softwareproductlines.com/benefits/benefits.html (2005-02-03, 10:45)

12. Kang K. Cohen S., Hess J., Novak W., Peterson A.: Feature Oriented Domain
 Analysis (FODA) feasibility study, Technical report CMU/SEI -90-TR-021,
 Software Engineering Institute, Carnegie Mellon University, Pittsburg, PA (1990)
 (2005-01-27, 18.30)

13. Kang K., Kim, S., Lee, J., Kim, K., Shin E. and Huh, M.: FORM: A Feature-
 Oriented reuse Method with Domain –Specific Reference Architectures, Annals of
 Software Engineering, 5 (1998).

14. Kang K. C., K. Lee, J. Lee: Concepts and Guidelines of Feature Modeling for
 Product Line Software Engineering, Phong University of Science and
 Technology, 2002

15. Mohr J.: Professor of Computing Science, University of Alberta, Alberta,

Canada.
http://www.augustana.ab.ca/~mohrj/courses/2000.winter/csc220/papers/rup_best_
practices/rup_bestpractices.pdf (2005-03-20, 16:47)

16. McGregor. J. D., the Arcade Game Maker Product Line Example, Available at
 http://www.cs.clemson.edu/%7Ejohnmc/productLines/example/frontPage.htm
 (2004-11-10, 08:10)

17. Northrop L. M.: SEI, A Framework for Product Line Practice, Available at:
 http://www.sei.cmu.edu/productlines/framework.html (2004-11-10, 12:30)

18. OMG: Unified Modeling Language version 2.0, Available at: http://www.uml.org
 (2005-04-18, 14:15)

19. Reibisch M.: Towards a More Precise Definition of Feature Models,
 Technical University Ilmenau, Germany. (2005-02-10, 09.23)
 http://www.theoinf.tu-ilmenau.de/~riebisch/publ/06-riebisch.pdf

20. Reibisch M., Böllert K., Streitferdt D., Philippow I.: Extending Feature
 Diagrams with UML Multiplicities, In Proceedings of the Sixth Conference on
 Integrated Design and Process Technology (IDPT), Pasadena, CA, June 2002
 http://www.theoinf.tu-ilmenau.de/~streitdf/TheHome/own/data/IDPT2002-
 paper.pdf (2005-02-16, 20:01)

21. Rational Software: The Rational Unified Process for Systems Engineering
 Whitepaper, ver.1.1, 2003, Available at: (2005-02-20, 15:38)
 http://www.rational.com/media/whitepapers/TP165.pdf

22. Schlee M.: Software Engineer, DFA, Generative Programming of Graphical
 User Interfaces, Thomson grass valley, Brunnenweg 9, Weiterstadt, Germany.
 http://www.care-t.com/events/mbui-workshop2004/papers/P02.Schlee.pdf
 (2005-02-16, 20:24)

 33

Appendix 1: Arcade Game Feature Diagram

Appendix 2: Arcade Game Feature Model Descr iption

Appendix 3: Arcade Game Use-Case Specifications

