Problem formulation

A nonlinear least-squares problem is an optimization problem on the form
\[
\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} \sum_{i=1}^{m} r_i(x)^2,
\]
where \(n \) is the number of variables.

The objective function \(f(x) \) is defined by \(m \) auxiliary residual functions \{\(r_i(x) \)\}.

We will assume that \(m \geq n \).

The problem is called least-squares since we are minimizing the sum of squares of the residual functions.

If we assume that the development of the population is exponential, the model function might be
\[
g(t) = x_1 e^{x_2 t}
\]
and the residuals
\[
r_i(x) = g(t_i) - y_i = x_1 e^{x_2 t_i} - y_i.
\]

In standard least squares problems, the vertical distance (squared) between observations and a model function are minimized.
We will write the optimization problem as
\[
\min_x f(x),
\]
where
\[
f(x) = \frac{1}{2} \sum_{i=1}^{m} \eta_i(x)^2 \equiv \frac{1}{2} r(x)^T r(x) \equiv \frac{1}{2} \|r(x)\|^2,
\]
and \(r\) is a vector-valued function
\[
r(x) = [r_1(x) \ r_2(x) \ \ldots \ r_m(x)]^T.
\]
For each value of \(x\), the residual function value \(r(x)\) may be interpreted as a point in “observation space” \(\mathbb{R}^m\).

The residual function describes a (usually \(n\)-dimensional) surface in \(\mathbb{R}^m\).

Observe that
\[
\min_x \frac{1}{2} \|r(x)\|^2
\]
may be interpreted as
\[
\min_x \frac{1}{2} \|r(x) - 0\|^2.
\]

Thus, a least squares problem may be interpreted as trying to find the point \(x^*\) in parameter space \(\mathbb{R}^n\) that corresponds to the point \(r(x^*)\) in observation space \(\mathbb{R}^m\) that is closest to the origin.

For the antelope data and model
\[
f(x) = \frac{1}{2} \sum_{i=1}^{5} (x_1 e^{\alpha t_i} - y_i)^2 = \frac{1}{2} r(x)^T r(x),
\]
\[
\begin{bmatrix}
x_1 e^{\alpha t_1} - y_1 \\
x_1 e^{\alpha t_2} - y_2 \\
x_1 e^{\alpha t_3} - y_3 \\
x_1 e^{\alpha t_4} - y_4 \\
x_1 e^{\alpha t_5} - y_5
\end{bmatrix}
= \begin{bmatrix}x_1 e^{1\alpha} - 3 \\
x_1 e^{2\alpha} - 4 \\
x_1 e^{3\alpha} - 6 \\
x_1 e^{4\alpha} - 11 \\
x_1 e^{5\alpha} - 20
\end{bmatrix}.
\]

Then,
\[
\min_x \frac{1}{2} \|r(x)\|^2 = \min_x \frac{1}{2} \|h(x) - y\|^2
\]

With this formulation we are trying to find the point \(x^*\) in parameter space \(\mathbb{R}^n\) that corresponds to the point \(h(x^*)\) on the model surface in observation space \(\mathbb{R}^m\) that is closest to the observations \(y\).
\[r(x) = [r_1(x) \ r_2(x) \ r_3(x)]^T \text{ residual surface in } \mathbb{R}^m \]

\[h(x) = [h_1(x) \ h_2(x) \ h_3(x)]^T \text{ observation surface in } \mathbb{R}^m \]
\(r(x) = [r_1(x) \ r_2(x) \ r_3(x)]^T \) residual surface in \(\mathbb{R}^m \)

\[
f(x) = \frac{1}{2} \| r(x) \|^2 \text{ as a function of } x = [x_1 \\ x_2]^T \text{ in } \mathbb{R}^n
\]
Observation space \mathbb{R}^3

Parameter space \mathbb{R}^2

Model space

- $h_1(t) = 2.53e^{0.21t}$
- $h_2(t) = 3.57e^{0.10t}$
- $h_3(t) = 5.29e^{0.44t}$
Observation space \mathbb{R}^3

Parameter space \mathbb{R}^2

Model space

$\begin{align*}
h_1(t) &= 2.53e^{0.21t} \\
h_2(t) &= 3.57e^{0.10t} \\
h_3(t) &= 5.29e^{0.44t}
\end{align*}$
Parameter space \mathbb{R}^2

Observation space \mathbb{R}^3

Model space

\[h_1(t) = 2.53e^{0.21t} \]
\[h_2(t) = 3.57e^{0.10t} \]
\[h_3(t) = 5.29e^{0.44t} \]
The Gradient, Jacobian, and Hessian

The Gradient and Hessian structure

\[\nabla f(x) = \frac{1}{2} \left(J(x)^T J(x) + \sum_{i=1}^{m} r_i(x)^2 r_i(x) \right), \]

where \(J(x) \) is the Jacobian of \(r(x) \), i.e.

\[\nabla f(x) = \nabla r(x)^T J(x), \]

and may be derived from the chain rule.

For the example data and model

\[\nabla f(x) = (j(x)^T j(x)) + \sum_{i=1}^{m} r_i(x)^2 r_i(x), \]

the Hessian is

\[\nabla^2 f(x) = \nabla r(x)^T J(x). \]

Thus, the Hessian of a least-squares objective function is a sum of two terms:

- \(j(x)^T j(x) \) with first-order derivatives only, and
- \(\sum_{i=1}^{m} r_i(x)^2 r_i(x) \) with second-order derivatives.

The Gauss-Newton method

A method that uses the approximation \(Q(x) = 0 \) is called the

\[\nabla f(x) = \nabla r(x)^T J(x), \]

or with the Hessian approximated by \((j(x)^T j(x))^{-1} j(x)^T \), i.e.

\[\nabla f(x) = \nabla r(x)^T J(x). \]

Using the chain rule again on

\[\nabla f(x) = \nabla r(x)^T J(x), \]

\[\nabla^2 f(x) = \nabla r(x)^T J(x). \]
The Gauss-Newton method

The Newton formulation

- If we assume that $J(x)$ has full rank, the Hessian approximation
 \[J(x)^T J(x) \]
 is positive definite and the Gauss-Newton search direction p^{GN} is a descent direction.
- Otherwise, $J(x)^T J(x)$ is non-invertible and the equation
 \[J(x)^T J(x)p^{GN} = -J(x)^T r(x) \]
 does not have a unique solution. In this case, the problem is said to be under-determined or over-parameterized.

The Gauss-Newton method

Geometrical interpretation of the search direction

- The linear approximation corresponds to a tangent plane to the surface $r(x)$ at $r_k = r(x_k)$.
- The point on the tangent plane closest to the origin is given by the projection of $-r_k$ onto the range space of J_k, since
 \[J_k p^{GN} = J_k (J_k^T J_k)^{-1} J_k^T (-r_k). \]

The Gauss-Newton method

The linear least squares formulation

- Assume we approximate the residual function $r(x)$ with a linear Taylor function, i.e. the plane
 \[r(x_k + p) \approx r(x_k) + J_k p. \]
- The minimizer on the plane is found by solving the linear least squares problem
 \[\min_p \frac{1}{2} \| J_k p + r_k \|^2 = \min_p \frac{1}{2} \| J_k p - (-r_k) \|^2. \]
- The solution is given by the normal equations
 \[J_k^T J_k p = -J_k^T r_k \]
 or
 \[p = (J_k^T J_k)^{-1} J_k^T (-r_k). \]
- Thus, the minimizer on the plane corresponds to the Gauss-Newton search direction.

The Gauss-Newton method

Geometrical interpretation of the search direction

- The first order condition
 \[\nabla f(x^*) = 0 \]
 corresponds to when
 \[J(x^*)^T r(x^*) = 0, \]
 i.e. when $r(x^*)$ is orthogonal to the tangent plane spanned by the columns of $J(x^*)$.
Geometric interpretation of the first order condition

Zero residual problems

- A special case is when \(r(x^*) = 0 \Rightarrow f(x^*) = 0 \).
- In this case the problem is said to have zero residual and the surface \(r(x) \) intersects the origin.

Convergence for the Gauss-Newton method

- If \(r(x^*) = 0 \), the approximation \(Q(x) \approx 0 \) is good and the Gauss-Newton method will behave like the Newton method close to the solution, i.e. converge quadratically if \(J(x^*) \) has full rank.
- The advantage over the Newton method is that we do not need to calculate the second-order derivatives \(\nabla^2 r_i(x) \).
- However, if any residual component \(r_i(x^*) \) and/or the corresponding curvature \(\nabla^2 r_i(x) \) is large, the approximation \(Q(x) \approx 0 \) will be poor, and the Gauss-Newton method will converge slower than the Newton method.
- For such problems, the Gauss-Newton method may not even be locally convergent, i.e. without a global strategy such as the line search, it will not converge no matter how close to the solution we start.

Statistical interpretation

Stochastic model

- If the residuals are interpreted statistically, i.e. we have a model
 \[
 y_i = x_1 e^{x_2 t} + \varepsilon_i
 \]
 and the errors \(\varepsilon_i \) are assumed to be independent and normally distributed \(N(0, \sigma^2) \), our least squares estimation of the parameters will be the maximum likelihood estimators given our measurement \(y_i \).

Variance of estimated parameters

- The variance for the estimated parameters are calculated from the variance-covariance matrix
 \[
 D = \sigma^2 (\nabla^2 f(x^*))^{-1},
 \]
 where each diagonal element \(d_{ii} \) correspond to the variance of the parameter \(x_i \), and the off-diagonal element \(d_{ij} \) correspond to the covariance between parameters \(x_i \) and \(x_j \).
- If \(\sigma^2 \) is unknown, it may be estimated by
 \[
 \hat{\sigma}^2 = \frac{r(x^*)^T r(x^*)}{m - n},
 \]
 where \(m \) is the number of observations, and \(n \) is the number of parameters.
Statistical interpretation

Variance of estimated parameters

- A high variance means a high degree of uncertainty about a parameter.
- In this context, the inverse matrix
 \[K = D^{-1} = \frac{1}{\sigma^2} \nabla^2 f(x^*) , \]
 is sometimes called the information matrix, since higher diagonal values \(k_i \) correspond to more information about the parameter \(x_i \).
- Since the information matrix is proportional to the hessian \(H(x^*) = \nabla^2 f(x^*) \), strong curvature corresponds to high information, i.e. good localization of the parameter.
- Furthermore, if the hessian is approximated by
 \[\nabla^2 f(x^*) \approx J(x^*)^T J(x^*) , \]
 the covariances will only be first order approximations of the true covariances.

Statistical interpretation

Variance of estimated parameters

- The approximations of the parameters and the covariances makes it possible to derive confidence limits, do hypothesis testing, etc.
- For linear problems, the covariance estimations are exact. For non-linear problems, the covariances are still exact, but the confidence limits are not, since the confidence regions are not ellipses.

Weighted least squares

Formulation

- If the observations errors are dependent and/or with different variances, weighted least squares should be used, i.e. the problem
 \[\min_x r(x)^T W r(x) , \]
 should be solved.
- If the matrix \(\Sigma \) with elements \(\sigma_{ij}^2 \) contain the covariances between observations \(i \) and \(j \), the optimal choice of \(W \) is
 \[W = \Sigma^{-1} , \]
 and the solution of the weighted least squares problem is again the maximum likelihood solution.
- The distance measure \(r(x)^T \Sigma^{-1} r(x) \) is sometimes called the Mahalanobis distance.
If the observations are independent, Σ and W will be diagonal matrices, and $w_i = 1/\sigma_i^2$.

Thus the solution will rely more on “good” observations, since residuals with a corresponding small observation error will be weighted more heavily in the objective function.

Orthogonal regression

- When we solve the problem
 \[
 \min_x \frac{1}{2} \sum_{i=1}^m r_i(x)^2 = \frac{1}{2} \min_x r(x)^T r(x)
 \]
 where $r_i(x) = g(t_i) - y_i$ is the difference between our model and our measured values, we minimize the square of the vertical distance.

 If we assume that we have errors also in the independent variable t_i, it may be appropriate to minimize the orthogonal distance between the model and the measurements instead.

 This may be formulated as solving the problem
 \[
 \min_{x, \delta} f(x) = \sum_{i=1}^m r_i(x; t_i + \delta_i)^2 + \|\delta\|^2,
 \]
 where δ_i is the error in t_i and $r_i(x; t_i + \delta_i) = g_i(t_i + \delta_i) - y_i$.

 Problem minimizing the orthogonal distance between model and measurements are sometimes referred to as orthogonal regression problems.

Weighted least squares

Methods

- If we want to solve a weighted least squares problem, there are two equivalent solutions:
 - Modify the algorithm or
 - modify the residual/Jacobian function.

- A modified algorithm would solve the following equation
 \[
 J^T W J p = -J^T W r.
 \]

- A modified residual/Jacobian would be
 \[
 r_s(x) = R r(x), J_s(x) = R J(x),
 \]
 where $R^T R = W$ is the Cholesky factorization of W.

- Such a factor R will always exist if W is positive semidefinite.

Orthogonal regression

Methods

- By reformulating the objective function, we may use algorithms for “conventional” non-linear least squares to solve orthogonal regression problems.

 For our example
 \[
 y = g(t) = x_1 e^{x_2 t}
 \]
 we may introduce one point $(s_i, g(s_i))$ on the curve for each measurement (t_i, y_i).

- Defining the component function $r_i(x)$
 \[
 r_i(x) = \begin{bmatrix} g(t_i) - y_i \\ s_i - t_i \\ \vdots \\ r_m(x) \end{bmatrix},
 \]
 and $r(x) = \begin{bmatrix} r_1(x) \\ \vdots \\ r_m(x) \end{bmatrix}$,

 the least squares problem takes the following, standard, form:
 \[
 \min_x r(x)^T r(x).
 \]