C4B: Practical Advice for Non-linear Least Square Problems

Niclas Börlin

5DA001 Non-linear Optimization

Function call structure

<table>
<thead>
<tr>
<th>Problem independent</th>
<th>Problem specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Calculate a starting approximation (x_0).</td>
<td></td>
</tr>
<tr>
<td>2 Repeat for (k = 0,1,\ldots)</td>
<td></td>
</tr>
<tr>
<td>3 Calculate residual (r(x_k)) and Jacobian (J(x_k)).</td>
<td></td>
</tr>
<tr>
<td>4 Calculate termination criteria.</td>
<td></td>
</tr>
<tr>
<td>5 Calculate search direction (p_k).</td>
<td></td>
</tr>
<tr>
<td>6 Calculate step length (\alpha_k).</td>
<td></td>
</tr>
<tr>
<td>7 Calculate (x_{k+1} = x_k + \alpha_k p_k).</td>
<td></td>
</tr>
</tbody>
</table>

Toy problem: Circle fitting

Given a number of points \(\tilde{p}_i = [\tilde{x}_i, \tilde{y}_i]^T, i = 1, 2, \ldots, m\), “find the circle that fits the points best in the least squares sense”.

Objective function

Step 1: Decide what to minimize.

Minimize the squared sum of Euclidean distances between each measured point \(\tilde{p}_i\) and the closest point \(p_i\) on the circle, i.e.

\[
f(x) = \frac{1}{2} \sum_{i=1}^{m} ||p_i - \tilde{p}_i||^2.
\]
Models and parameters

Step 2: Formulate a mathematical model of the object and determine the unknowns.

Step 2a: Formulate a local model for each term of the least squares sum.

A point \((x_i, y_i)\) on a circle with center \((c_x, c_y)\) and radius \(r\) can be modelled as

\[
G_i(x) = \begin{bmatrix} x_i \\ y_i \end{bmatrix} = \begin{bmatrix} c_x \\ c_y \end{bmatrix} + r \begin{bmatrix} \cos \theta_i \\ \sin \theta_i \end{bmatrix}
\]

for some "phase angle" \(\theta_i\).

Step 2b: Formulate a global model describing a vector with all terms of the least squares sum.

\[
G(x) = \begin{bmatrix} G_1(x) \\ G_2(x) \\ \vdots \\ G_m(x) \end{bmatrix}
\]

Step 2c: Determine which parameters to put in the vector of unknowns, and in what order.

\[
x = \begin{bmatrix} c_x \\ c_y \\ r \\ \theta_1 \\ \vdots \\ \theta_m \end{bmatrix},
\]

where \(c_x, c_y, r\) are the "global" parameters, corresponding to the circle we wish to find and the \(\theta_i\) are "local" parameters, corresponding to one point each.

Step 2d: Implement the model function.

Step 2e: Verify the model and implementation by calculating \(G(x)\) for realistic values of \(x\).

The residual

Step 3a: Implement the residual \(r(x)\) as "model minus data".

\[
r(x; d) = G(x) - d, \text{ where } d = \begin{bmatrix} \hat{p}_1 \\ \hat{p}_2 \\ \vdots \\ \hat{p}_m \end{bmatrix} \text{ contain the "measurements".}
\]

Step 3b: Reality check. Verify that \(r(x^*; G(x^*)) = 0\).

Models and parameters

Step 2c: Determine which parameters to put in the vector of unknowns, and in what order.

The Jacobian

Step 4a: Derive an analytical expression for the Jacobian. Use symbolic tools, e.g. Maple, if necessary.

Step 4b: Implement the Jacobian.

\[
J(x; d) = \begin{bmatrix} 1 & 0 & \cos \theta_1 & -r \sin \theta_1 \\ 0 & 1 & \sin \theta_1 & r \cos \theta_1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & \cos \theta_m & -r \sin \theta_m \\ 0 & 1 & \sin \theta_m & r \cos \theta_m \end{bmatrix}
\]

Step 4c: Compare the implemented Jacobian with a numerical approximation.

\[
J(x; d) \approx \begin{bmatrix} \frac{r(x+c_1)-r(x-c_1)}{2\epsilon} & \ldots & \frac{r(x+c_m)-r(x-c_m)}{2\epsilon} \\ \vdots & \vdots & \vdots \\ \frac{r(x+c_1)-r(x-c_1)}{2\epsilon} & \ldots & \frac{r(x+c_m)-r(x-c_m)}{2\epsilon} \end{bmatrix},
\]

where \(c_1 = [\epsilon \ 0 \ \ldots \ 0]^T, \epsilon_n = [0 \ \ldots \ 0 \ \epsilon]^T\).

Step 4d: Verify that \(J(x)\) has full rank.
Convergence check on synthetic, error-free data

Step 5: Tests on perfect data. Use a realistic \(x^\ast \) and generate error-free "measurements", i.e. \(d = G(x^\ast) \).

Step 5a: Call the optimization method with \(x_0 = x^\ast \) and verify that it returns \(x^\ast \) as the solution after maximum 1 iteration.

Step 5b: Generate starting approximations \(x_0 \) as perturbations of the true solution \(x^\ast \). Verify convergence from a reasonable large region.

Perturbation sensitivity of solution

Step 5: Tests on data with known errors.

Step 5a: Use a realistic \(x^\ast \) and generate "measurements" with an added measurement error, i.e.

\[
d = G(x^\ast) + \varepsilon, \varepsilon \in \mathcal{N}(0, \sigma^2).
\]

where \(\sigma^2 \) is chosen to give errors of a reasonable size.

Step 5b: Solve the optimization problem with \(x_0 = x^\ast \). Call the solution to the new problem \(\hat{x} \).

Step 5c: Compare the solution of the perturbed problem \(\hat{x} \) with the solution of the original problem \(x^\ast \).

Step 5d: Repeat steps 5a-5c and analyze the deviation of \(\hat{x} \) from \(x^\ast \).

Step 5e: Repeat steps 5a-5d with \(x_0 \neq x^\ast \), i.e. perturb the starting approximation also.

Starting approximation calculation

Step 6a: Construct a function for the starting approximation that (optimally) relies only on measurements.

\[
c_0^x = \bar{x}, c_0^y = \bar{y}, n_0 = \sqrt{\bar{x}_i - c_0^x)^2 + (\bar{y}_i - c_0^y)^2}, \theta_0_i = \tan^{-1} \left(\frac{\bar{y}_i - c_0^y}{\bar{x}_i - c_0^x} \right)
\]

Step 6b: Check the quality of the starting approximating function on error-free data.

Step 6b.1: Generate realistic measurements \(d \) without any errors.

Step 6b.2: Use the function in Step 6a to determine \(x_0 \) from \(d \) and solve the optimization problem. Call the solution \(\hat{x} \).

Step 6b.3: Compare \(\hat{x} \) with \(x^\ast \).

Step 6c: Repeat steps 6b.1 to 6b.3 on data with realistic errors.

Sensitivity analysis

\[
\text{"Truth"} \\
1 \text{ Start with a "true" parameter vector } x^\ast = [c_x, c_y, r, \theta_1, \ldots, \theta_m]. \\
2 \text{ Calculate points } p_i \text{ on the circle.} \\
3 \text{ Generate simulated measurements } \tilde{p}_i = p_i + \epsilon_i, \epsilon_i \in \mathcal{N}(0, \sigma^2). \\
4 \text{ Construct a starting approximation } x_0 \text{ from the measurements.} \\
5 \text{ Solve the parameter estimation problem. Call the solution } \hat{x}. \\
6a \text{ Study the deviation of } \hat{x} \text{ for repeated simulations. Determine precision, repeatability.}
\]

\[
\text{"Real world"} \\
1 \text{ Start with a "true" parameter vector } x^\ast = [c_x, c_y, r, \theta_1, \ldots, \theta_m]. \\
2 \text{ Calculate points } p_i \text{ on the circle.} \\
3 \text{ Generate simulated measurements } \tilde{p}_i = p_i + \epsilon_i, \epsilon_i \in \mathcal{N}(0, \sigma^2). \\
4 \text{ Construct a starting approximation } x_0 \text{ from the measurements.} \\
5 \text{ Solve the parameter estimation problem. Call the solution } \hat{x}. \\
6b \text{ Compare the true parameter vector } x^\ast \text{ with the estimated } \hat{x}. \text{ Determine accuracy.}
\]
function pts=circle_g(c,r,theta)
%CIRCLE_G Circle example model function.
% pts=circle_g(c,r,theta)
%c - center of circle.
%r - circle radius.
%theta - angle parameter for points on circle, i=1,2,...,m.
%pts - points on the circle.

% Number of points.
m=length(theta);

if (slow_but_readable)
% Preallocate result to avoid memory fragmentation and improve speed.
 pts=zeros(2,m);
 for i=1:m
 % Calculate position of each point on the circle.
 pts(:,i)=c+r*[cos(theta(i));sin(theta(i))];
 end
else % faster
pts=repmat(c,1,m)+r*[cos(theta);sin(theta)];
end

pts=circle_g(c,r,theta); % Call model function.
f=pts(:)-b(:); % Unroll vector and subtract data.

if (nargout>1) % Want Jacobian too.
 % Slow but readable
 J=zeros(2*m,m+3);
 for i=1:m
 rows=(i-1)*2+[1:2]; % Rows in J corresponding to point m.
 J(rows(1),1)=1; % dFx/dcx
 J(rows(1),3)=cos(theta(i)); % dFx/dr
 J(rows(1),3+i)=r*(-sin(theta(i))); % dFx/dthetai=0 except for i=k.
 J(rows(2),2)=1; % dFy/dcy
 J(rows(2),3)=sin(theta(i)); % dFy/dr
 J(rows(2),3+i)=r*cos(theta(i)); % dFy/dthetai=0 except for i=k.
 end
else % faster
 J=repmat(jacobian(c,r,theta,theta),1,m);
end

if (nargout>2) % Want numerical approximation, too.
 JJ=jacapprox(mfilename,x,1e-6,(m,b));
end