The continuous optimization problem

- In its most general form, a continuous optimization problem may be written

\[
\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad c_i(x) = 0, \quad i \in E \\
c_i(x) \geq 0, \quad i \in I
\]

- The function \(f(x) : \mathbb{R}^n \rightarrow \mathbb{R} \) is called the objective function and is assumed to be twice continuously differentiable.
- The vector \(x \) contains the variables to be estimated.
- The functions \(c_i(x) : \mathbb{R}^n \rightarrow \mathbb{R} \) define constraints on the variables.
- The sets \(E \) and \(I \) are index sets for the equality and inequality constraints, respectively.
- A maximization problem is rewritten as

\[
\max_x f(x) \equiv -\min_x -f(x).
\]

Example

- Consider the problem

\[
\min (x_1 - 2)^2 + (x_2 - 1)^2 \\
\text{subject to } x_2 \geq x_1^2, \\
x_1 < 2 - x_2.
\]

- We may rewrite this problem into general form as

\[
\begin{align*}
f(x) &= (x_1 - 2)^2 + (x_2 - 1)^2, \\
x &= \begin{bmatrix} x_1 \\
x_2 \end{bmatrix}, \\
c(x) &= \begin{bmatrix} c_1(x) \\
c_2(x) \end{bmatrix} = \begin{bmatrix} -x_1^2 + x_2 \\
-x_1 - x_2 + 2 \end{bmatrix}, \\
I &= \{1, 2\}, \; E = \{\}
\end{align*}
\]

The parameter space

- The vector \(x \) will be interpreted as a point in \(\mathbb{R}^n \), the parameter space.
- Points that satisfies all constraints are called feasible and belong to the feasible set \(\Omega \) which is a subset of \(\mathbb{R}^n \).
- At a feasible point \(x \), an inequality constraint \(c_i(x) \geq 0 \) is said to be binding or active if \(c_i(x) = 0 \).
- If \(c_i(x) > 0 \), the constraint is nonbinding or inactive.
- Equality constraints are always active.
The parameter space

- The point \(x \) is said to be on the boundary of the constraint if \(c_i(x) = 0 \) and in the interior of the constraint if \(c_i(x) > 0 \).
- Equality constraints have no interior points.
- The set of active constraints at a given point is called the active set (of constraints).
- A feasible point with at least one active constraint belongs to the boundary of the feasible set.
- Feasible points with no active constraints are interior points to the feasible set.

Optimality conditions for constrained problems

- A minimizer \(x^* \) to a minimization problem
 \[
 \min_x f(x) \\
 \text{s.t. } c_i(x) = 0, \quad i \in \mathcal{E} \\
 c_i(x) \geq 0, \quad i \in \mathcal{I}
 \]
 must satisfy
 \[
 \rho^T \nabla f(x^*) \geq 0
 \]
 for all feasible directions \(\rho \).

Overview

- Consider a problem with linear equality constraints, i.e.
 \[
 \min_x f(x) \\
 \text{s.t. } Ax = b,
 \]
 where \(A \) is assumed to have full rank.
- The constrained problem may be rewritten to the unconstrained problem
 \[
 \min_{\nu \in \mathbb{R}^r} \phi(\nu) = f(\bar{x} + Z \nu),
 \]
 where \(\bar{x} \) is a feasible point and \(Z \in \mathbb{R}^{n \times r} \) is a basis for \(\mathcal{N}(A) \).
- The function \(\phi(\nu) \) is called the reduced function.
Necessary conditions for the reduced problem

▶ The necessary conditions for the reduced problem are

\[
\nabla \phi(v) = Z^T \nabla f(\bar{x} + Zv) = Z^T \nabla f(x) = 0,
\]

\[
\nabla^2 \phi(v) = Z^T \nabla^2 f(\bar{x} + Zv)Z = Z^T \nabla^2 f(x)Z \quad \text{pos. semidef.,}
\]

where \(x = \bar{x} + Zv \).

▶ The expression

\[
Z^T \nabla f(x)
\]

is called the reduced gradient and

\[
Z^T \nabla^2 f(x)Z
\]

the reduced Hessian.

▶ If the null space matrix \(Z \) is an orthogonal projection matrix, they are called projected gradient and Hessian, respectively.

Sufficient conditions for linear equality constraints

▶ If \(x^* \) satisfies

\[
A x^* = b,
\]

\[
Z^T \nabla f(x^*) = 0, \quad \text{and}
\]

\[
Z^T \nabla^2 f(x^*)Z \quad \text{is positive definite},
\]

where \(Z \) is a basis matrix for \(\mathcal{N}(A) \), then \(x^* \) is a strict local minimizer of \(f \) over \(\{ x : Ax = b \} \).

Example

▶ Consider the problem

\[
\min_{x} f(x) = x_1^2 - 2x_1 + x_2^2 - x_3^2 + 4x_3,
\]

s.t. \(x_1 - x_2 + 2x_3 = 2 \),

with gradient and Hessian functions

\[
\nabla f(x) = \begin{bmatrix} 2x_1 - 2 \\ 2x_2 \\ -2x_3 + 4 \end{bmatrix} \quad \text{and} \quad \nabla^2 f(x) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{bmatrix}.
\]

▶ As null space matrix of the constraint matrix

\[
A = [1, -1, 2]
\]

we may choose

\[
Z = \begin{bmatrix} 1 & -2 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}.
\]
Example: The reduced gradient

- In the feasible point
 \[x = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}, \]
 the reduced gradient is
 \[Z^T \nabla f(x) = \begin{bmatrix} 1 & -2 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}^T \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \]
 and \(x \) is not a local minimizer.

- In the feasible point
 \[x^* = \begin{bmatrix} 2.5 \\ -1.5 \\ -1 \end{bmatrix}, \nabla f(x^*) = \begin{bmatrix} 3 \\ -3 \\ -6 \end{bmatrix}, \text{ and } Z^T \nabla f(x) = 0. \]
 Hence, \(x^* \) is potentially a local minimizer.

The Lagrange multipliers

- Let \(x^* \) be a minimizer and \(Z \in \mathbb{R}^{n \times r} \) a null space matrix for \(A \).
- The gradient \(\nabla f(x^*) \) may be expressed as the sum of its null space and range space components, i.e.
 \[\nabla f(x^*) = Zv^* + A^T \lambda^* , \]
 where \(v^* \in \mathbb{R}^r \) and \(\lambda^* \in \mathbb{R}^m \).
- Together with the first order conditions we get
 \[Z^T \nabla f(x^*) = Z^T Zv^* + Z^T A^T \lambda^* = \]
 \[= Z^T Zv^* + (AZ)^T \lambda^* = 0 \]
 \[= Z^T Zv^* = 0 \]
 \[\Downarrow \]
 \[Zv^* = 0. \]

Example: The reduced Hessian

- The reduced Hessian in \(x^* \) is
 \[Z^T \nabla^2 f(x^*) Z = \begin{bmatrix} 1 & -2 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}^T \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & \lambda^* \end{bmatrix} \]
 and is positive definite.
- Thus, the second order sufficient conditions are satisfied and \(x^* \) is a strict local minimizer of \(f \).
- Notice that \(\nabla^2 f(x) \) itself is not positive definite.

The Lagrange multipliers

- Thus, a minimizer satisfies
 \[\nabla f(x^*) = A^T \lambda^* . \]
- In other words: In a local minimum, the gradient of the objective function is a linear combination of the gradients of the constraints.
- The coefficients in the vector \(\lambda^* \) are called Lagrange multipliers.
- The constraint and first order condition may be formulated in one system equation of \(n + m \) equations and \(n + m \) unknowns in \(x \) and \(\lambda \):
 \[\begin{bmatrix} 0 & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} \nabla f(x) \\ b \end{bmatrix} . \]
The Lagrange multipliers and sensitivity

- The Lagrange multipliers may be used to estimate the sensitivity of the min value $f(x^*)$ with respect to the constraints.
- Assume we have found a solution x^* to
 \[
 \min_x f(x) \quad \text{s.t.} \quad Ax = b.
 \]
- Consider the perturbed constraints $Ax = b + \delta$.

The Lagrangian function

- Define the Lagrangian function of x and λ as
 \[
 \mathcal{L}(x, \lambda) = f(x) - \sum_{i=1}^m \lambda_i (a_i^T x - b_i) = f(x) - \lambda^T (Ax - b).
 \]
- The gradients of the Lagrangian are
 \[
 \nabla_x \mathcal{L}(x, \lambda) = \nabla f(x) - A^T \lambda
 \]
 and
 \[
 \nabla_{\lambda} \mathcal{L}(x, \lambda) = b - Ax.
 \]
- The first order condition on the Lagrangian
 \[
 \nabla \mathcal{L}(x^*, \lambda^*) = 0
 \]
correspond to the first order condition on the constrained problem.
- A local minimizer to the constrained problem is a stationary point to the Lagrangian.

The Lagrange multipliers and sensitivity

- The perturbation δ is small enough, the solution \bar{x} to the perturbed problem will be close to x^* and
 \[
 f(\bar{x}) \approx f(x^*) + (\bar{x} - x^*)^T \nabla f(x^*) = f(x^*) + (\bar{x} - x^*)^T A^T \lambda^*
 \]
 \[
 = f(x^*) + (Ax - Ax^*)^T \lambda^* = f(x^*) + (b - \delta - b)^T \lambda^*
 \]
 \[
 = f(x^*) + \delta^T \lambda^*
 \]
 \[
 = f(x^*) + \sum_{i=1}^m \delta_i \lambda_{\delta i}.
 \]
- Thus, if element i of the right hand side of the constraint is modified by δ_i, the optimal objective value will change with about $\delta_i \lambda_{\delta i}$.
- For this reason, the Lagrange multipliers are sometimes called shadow prices or dual variables.

Example

\[
\begin{align*}
A &= \begin{bmatrix} 0 & -1 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \\
x^* &= \begin{bmatrix} 0 \\ 0.6 \end{bmatrix}, \quad \nabla f(x^*) = \begin{bmatrix} 0 \\ 1.35 \end{bmatrix}, \\
\nabla^2 f(x^*) &= \begin{bmatrix} 2 & 0 \\ 0 & -5.9 \end{bmatrix}, \\
Z^T \nabla^2 f(x^*) Z &= [2].
\end{align*}
\]
Optimality conditions for linear inequality constrained problems

- Consider a problem with linear inequality constraints, i.e.

\[
\begin{align*}
\min_{x} \quad & f(x) \\
\text{s.t.} \quad & Ax \geq b,
\end{align*}
\]

where \(A \) is assumed to have full rank.

- The active constraints in a point \(x^* \) will determine if \(x^* \) is a minimizer.

- Our problem may thus be rewritten as

\[
\begin{align*}
\min_{x} \quad & f(x) \\
\text{s.t.} \quad & \hat{A}x = \hat{b},
\end{align*}
\]

where \(\hat{A} \) and \(\hat{b} \) contains the active constraints.

Complementary slackness

- If we define the Lagrange multiplier of an inactive constraint to be zero, we may describe the inequality conditions as

\[
\lambda_i (a_i^T x^* - b_i) = 0, \quad i = 1, \ldots, m.
\]

- This condition is called complementary slackness and means that
 - either the constraint is active (\(a_i^T x^* - b_i = 0 \))
 - or the Lagrange multiplier is zero (\(\lambda_i = 0 \)).

- At least one of the two must be true.

- The case when both cannot be true at the same time is called strict complementarity.

- Without strict complementarity, a Lagrange multiplier may be zero even if the constraint is active.

- In such a case, that constraint is called degenerate.

Example

For the problem

\[
\begin{align*}
\min_{x} \quad & f(x) = x^2 + \sin^2 2y \\
\text{s.t.} \quad & \begin{bmatrix} 0 & -1 \\ 0 & 1 \\ -2 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \geq \begin{bmatrix} -1 \\ -1 \end{bmatrix}
\end{align*}
\]

there are four corners, two of which are degenerate.

<table>
<thead>
<tr>
<th>Point</th>
<th>Active constraints</th>
<th>((x, y))</th>
<th>(\nabla f)</th>
<th>(\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1)</td>
<td>(1, 3)</td>
<td>(0)</td>
<td>(0)</td>
<td>(1.5, 0)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(1, 4)</td>
<td>(-0.5)</td>
<td>(-1)</td>
<td>(1.5, -0.5)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(2, 3)</td>
<td>(0.5)</td>
<td>(1)</td>
<td>(-0.5, -0.5)</td>
</tr>
<tr>
<td>(q_4)</td>
<td>(2, 4)</td>
<td>(-0.5)</td>
<td>(0)</td>
<td>(0.5, -0.5)</td>
</tr>
</tbody>
</table>
Necessary condition, linear inequalities

- In summary, the following conditions have to be satisfied for a point x^* to be a minimizer of a function f on the set $\{x : Ax \geq b\}$:

 $\begin{align*}
 Ax^* &\geq b, \\
 \nabla f(x^*) &= A^T \lambda^* \iff Z^T \nabla f(x^*) = 0, \\
 \lambda^* &\geq 0, \\
 \lambda^*^T (Ax^* - b) &= 0, \\
 Z^T \nabla^2 f(x^*) Z &\text{ positive semidefinite,}
 \end{align*}$

 for some vector λ^* of Lagrange multipliers and where Z is a null space matrix for the matrix \hat{A} of the active constraints in x^*.

Sufficient conditions, linear inequalities I

- With strict complementarity we may extend to sufficient conditions in a straightforward manner:

 - Assume x^* satisfies

 $\begin{align*}
 Ax^* &\geq b, \\
 \nabla f(x^*) &= A^T \lambda^*, \\
 \lambda^* &\geq 0, \\
 \lambda^*^T (Ax^* - b) &= 0, \\
 Z^T \nabla^2 f(x^*) Z &\text{ positive definite,}
 \end{align*}$

 - Then x^* is a strict local minimizer of f on the set $\{x : Ax \geq b\}$.

Why strict complementarity is needed

- The point x^* is also a strict local minimizer on the set $\{x : \hat{A}x = \hat{b}\}$, i.e. f increases in all directions p such that $\hat{A}p = 0$:

 - Study a direction p such that $\hat{A}p \geq 0$, where some component of p is strictly positive, i.e. p points into the feasible set.

 - Since $\nabla f(x^*) = A^T \lambda^* = \hat{A}^T \hat{\lambda}_*$, then $p^T \nabla f(x^*) = p^T \hat{A}^T \hat{\lambda}_* = (\hat{A}p)^T \hat{\lambda}_*$.

Why strict complementarity is needed

Cont’d

- With strict complementarity, we know that $$(\hat{A}p)^T \hat{\lambda}_* > 0,$$ i.e. p is an ascent direction and x^* must be a strict minimizer.

 - Without strict complementarity, $$(\hat{A}p)^T \hat{\lambda}_* = 0$$ may be true for some p.

 - This, we cannot tell anything about x^* with only first order information.

 - However, if we drop the degenerate constraints, we may formulate sufficient conditions on the remaining constraints.
Sufficient conditions, linear inequalities II

Let \(\hat{A}_+ \) contain the rows of \(\hat{A} \) corresponding to the non-degenerate constraints in \(x^* \).

Let \(Z_+ \) be a null space matrix to \(\hat{A}_+ \).

Assume \(x^* \) satisfies

\[
\begin{align*}
Ax^* & \geq b, \\
\nabla f(x^*) &= A^T \lambda^*, \\
\lambda^* & \geq 0, \\
\lambda^*^T (Ax^* - b) &= 0, \\
Z_+^T \nabla^2 f(x^*) Z_+ & \text{ positive definite.}
\end{align*}
\]

Then \(x^* \) is a strict local minimizer to the inequality constrained problem.

Optimality conditions for non-linear constraints

- Non-linear optimization problems with non-linear constraints are formulated as

\[
\begin{align*}
\min_{x} & \quad f(x) \\
\text{s.t.} & \quad c_i(x) = 0, i = 1, \ldots, m
\end{align*}
\]

for equality constraints, and

\[
\begin{align*}
\min_{x} & \quad f(x) \\
\text{s.t.} & \quad c_i(x) \geq 0, i = 1, \ldots, m
\end{align*}
\]

for inequality constraints.

- We will assume that the solution point \(x^* \) is regular, i.e. that the gradients of the active constraints in \(x^* \) \{\(\nabla c_i(x^*) : c_i(x^*) = 0 \}\) are linearly independent.

Example

For the problem

\[
\begin{align*}
\min_{x} & \quad f(x) = x^2 + \sin^2 2y \\
\text{s.t.} & \quad \begin{bmatrix} 0 & -1 \\ 0 & 1 \\ -2 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \geq \begin{bmatrix} -1 \\ 0 \\ -1 \\ -1 \end{bmatrix}
\end{align*}
\]

we have

\[
\begin{align*}
\lambda_1 &= 1.5, 0 \\
\lambda_2 &= 1.5, -0.5 \\
\lambda_3 &= -0.5, -0.5 \\
\lambda_4 &= 0, -0.5
\end{align*}
\]

Optimality conditions for non-linear constraints

Cont’d

- The optimality conditions are expressed in terms of the Lagrangian function

\[
\mathcal{L}(x, \lambda) = f(x) - \sum_{i=1}^{m} \lambda_i c_i(x) = f(x) - \lambda^T c(x),
\]

where \(\lambda \) is a vector of Lagrange multipliers and \(c \) is a vector of constraint functions \(\{c_i\} \).
Necessary conditions for equality constraints

- Let \(x^* \) be a local minimizer for \(f \) under the constraints \(c(x) = 0 \) and \(Z(x^*) \) be a null space matrix for the Jacobian \(\nabla c(x^*)^T \) of the constraints.
- If \(x^* \) is a regular point, then there exists a Lagrangian vector \(\lambda^* \) such that

\[
\begin{align*}
\nabla_x L(x^*, \lambda^*) &= 0 \iff Z(x^*)^T \nabla f(x^*) = 0, \\
Z(x^*)^T \nabla^2_{xx} L(x^*, \lambda^*) Z(x^*) &\text{ positive semi-definite.}
\end{align*}
\]

Sufficient conditions for equality constraints

- Let \(x^* \) be a point such that \(c(x^*) = 0 \) and \(Z(x^*) \) is a basis for the null space of \(\nabla c(x^*)^T \).
- Assume there exists a vector \(\lambda^* \) such that

\[
\begin{align*}
\nabla_x L(x^*, \lambda^*) &= 0, \\
Z(x^*)^T \nabla^2_{xx} L(x^*, \lambda^*) Z(x^*) &\text{ positive definite.}
\end{align*}
\]
- Then \(x^* \) is a strict local minimizer to \(f \) on the constraint set \(\{ x : c(x) = 0 \} \).

Example

- For linear constraints \(c(x) = Ax - b \), the Jacobian is \(\nabla c(x)^T = A \) and the first order conditions

\[
Z(x^*)^T \nabla f(x^*) = 0 \iff \nabla_x L(x^*, \lambda^*) = \nabla f(x^*) - \nabla c(x^*) \lambda = 0
\]

becomes

\[
Z^T \nabla f(x^*) = 0 \iff \nabla f(x^*) = A^T \lambda^*.
\]

- The second order necessary (sufficient) conditions becomes that

\[
\nabla^2_{xx} L(x^*, \lambda^*) = \nabla^2 f(x^*)
\]

should be positive semi-definite (definite).
Necessary conditions for inequality constraints

- Let \(x^* \) be a local minimizer for \(f \) under the constraints \(c(x) \geq 0 \) and \(Z(x^*) \) be a null space matrix for the Jacobian of the active constraints in \(x^* \).
- If \(x^* \) is a regular point, then there exists a Lagrangian vector \(\lambda^* \) such that
 \[
 \nabla_x L(x^*, \lambda^*) = 0 \iff Z(x^*)^T \nabla f(x^*) = 0, \\
 \lambda^* \geq 0, \\
 \lambda^*^T c(x^*) = 0, \\
 Z(x^*)^T \nabla^2_{xx} L(x^*, \lambda^*) Z(x^*) \text{ positive semi-definite.}
 \]
- The condition \(\lambda^*^T c(x^*) = 0 \) is the non-linear version of the complementary slackness condition.

Sufficient conditions for inequality constraints

- Let \(x^* \) be a points such that \(c(x^*) \geq 0 \).
- Assume there exists a vector \(\lambda^* \) such that
 \[
 \nabla_x L(x^*, \lambda^*) = 0, \\
 \lambda^* \geq 0, \\
 \lambda^*^T c(x^*) = 0, \\
 Z_+(x^*)^T \nabla^2_{xx} L(x^*, \lambda^*) Z_+(x^*) \text{ is positive definite,}
 \]
 where \(Z_+(x^*) \) is a basis for the null space of the Jacobian of the non-degenerate constraints in \(x^* \).
- Then \(x^* \) is a strict local minimizer to \(f \) on the constraint set \(\{ x : c(x) \geq 0 \} \).
- The necessary and sufficient conditions for the non-linear inequality constraints are often called the KKT conditions (Karush-Kuhn-Tucker conditions).

Duality

- The concept of duality is that for each minimization problem, there is a corresponding maximization problem that under some circumstances both problems have the same optimum.
- Define
 \[
 F^*(x) = \max_{y \in Y} F(x, y) \\
 F_*(y) = \min_{x \in X} F(x, y).
 \]

Duality Cont’d

- The problem \(\min_{x \in X} F^*(x) = \min_{x \in X} \max_{y \in Y} F(x, y) \) is called a min-max problem and the problem \(\max_{y \in Y} F_*(y) = \max_{y \in Y} \min_{x \in X} F(x, y) \) is called a max-min problem.
- These problems are each others duals.
- The min-max problem is called the primal problem and \(F^*(x) \) is called the primal function.
- The max-min problem is called the dual problem and \(F_*(y) \) is called the dual function.
Weak duality

- Each \(x \in X \) and \(y \in Y \) satisfies
 \[
 F_*(y) = \min_{x \in X} F(x, y) \leq F(x, y) \leq \max_{y \in Y} F(x, y) = F^*(x)
 \]
or
 \[
 F_*(y) \leq F^*(x).
 \]

- This is called weak duality.
- A consequence of weak duality is that the primal problem is bounded from below by \(F_*(y) \).

Strong duality

- A point \((x^*, y_*)\) satisfies the saddle-point condition for \(F \) if
 \[
 F(x^*, y) \leq F(x^*, y_*) \leq F(x, y_*)
 \]
 for all \(x \in X \) and \(y \in Y \).
- Assume there exists a point \((x^*, y_*)\) that satisfies the saddle-point condition.
- Then the solution value of the primal and the dual problem is the same, i.e.
 \[
 \min_{x \in X} \max_{y \in Y} F(x, y) = \max_{y \in Y} \min_{x \in X} F(x, y).
 \]

- This is called strong duality.

Duality and the Lagrange multipliers

- Consider the non-linear problem
 \[
 \begin{align*}
 \min_x & \quad f(x) \\
 \text{s.t.} & \quad c_i(x) \geq 0, \quad i = 1, \ldots, m
 \end{align*}
 \]
 and its corresponding Lagrangian function
 \[
 L(x, \lambda) = f(x) - \lambda^T c(x),
 \]
 where \(x \in \mathbb{R}^n \), \(\lambda \in \mathbb{R}^m \), \(\lambda \geq 0 \).
- Define the primal function
 \[
 L^*(x) = \max_{\lambda \geq 0} L(x, \lambda).
 \]

Duality and the Lagrange multipliers

Cont’d

- Study \(L^*(x) \) for a fixed \(x \):
 \[
 L^*(x) = \max_{\lambda \geq 0} \left(f(x) - \lambda^T c(x) \right).
 \]
- For a feasible point, \(c(x) \geq 0 \) and \(L^*(x) = f(x) \).
- For an infeasible point, some constraint \(c_i(x) \) will be negative and \(L^*(x) \) will be without bound.
- If we formulate the primal problem as
 \[
 \min_x L^*(x),
 \]
 then it will be the same as our original constrained problem.
Duality and the Lagrange multipliers

- We may use min-max-duality to formulate the dual problem.
- For each $\lambda \geq 0$, define the dual function
 \[\mathcal{L}^*(\lambda) = \min_x \mathcal{L}(x, \lambda) \]
 and the dual max-min-problem
 \[\max_{\lambda \geq 0} \mathcal{L}^*(\lambda). \]
- Some methods work on the dual problem instead of the primal.