C7: Methods for constrained problems

Niclas Börlin

5DA001 Non-linear Optimization

Methods for constrained non-linear problems

- Method for constrained non-linear problems may be categorized as follows:
 - Primal methods that work with the primal variables \(x_i \).
 - Dual methods that work with the dual variables \(\lambda_i \).
 - Combined methods that work on both.
 - Methods that use the original objective function.
 - Methods that modify the objective function.

Primal methods

- Primal methods that use the original objective function may be divided into two categories:
 - Feasible point methods, where every iterate \(x_i \) is a feasible point.
 - Penalty methods, that allow infeasible iterates, but the limit \(\lim x_i = x^* \) is feasible.

Feasible point methods, linear equality constraints

- If our problem has linear equality constraints only
 \[
 \min_{p \in \mathbb{R}^n} f(x + p) \\
 \text{s.t.} \quad Ap = 0
 \]
 we may solve
 \[
 \min_{v \in \mathbb{R}^{n-m}} \phi(v) = f(x + Zv),
 \]
 instead, where \(Z \) is a null space matrix of \(A \).
- The search direction \(p \) is found by first solving the reduced Newton equation (null-space equation)
 \[
 Z^T \nabla^2 f(x) Z v = Z^T \nabla f(x)
 \]
 for \(v \) and then calculating \(p = Zv \).
Feasible point methods, linear inequality constraints

Active set methods

- For problems with linear inequality constraints there are e.g. active set methods.
- Active set methods solve for the minimum on a set S of active constraints and modifies the active set until the solution of the complete problem is found.

▶ If x_k optimal on the current active set:
 ▶ Calculate the Lagrange multipliers λ_i for all active constraints.
 ▶ If the active set is empty or if all $\lambda_i \geq 0$,
 ▶ Terminate. x_k is a local minimizer of the problem.
 ▶ Otherwise, remove a constraint corresponding to a negative Lagrange multiplier λ_i from the active set.
 ▶ Determine a search direction p which is feasible with respect to the active constraints.
 ▶ Determine a step length α which satisfies $f(x_k + \alpha p) < f(x_k)$ and does not violate any inactive constraint.
 ▶ Update the point $x_{k+1} = x_k + \alpha p$.
 ▶ Modify the active set if any new constraints were activated.

Active set methods

Example

▶ At q_1,
 ▶ $S = \{c_4\}, \hat{A} = [2 \ 0], Z = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
 ▶ $p_1 = -ZZ^T\nabla f(q_1) \neq 0$.
 ▶ q_1 is not minimizer on S.
 ▶ p_1 is descent direction on S.
▶ At q_2,
 ▶ $ZZ^T\nabla f(q_2) = 0$.
 ▶ q_2 is minimizer on S.
 ▶ $\nabla f(q_2) = \hat{A}^T\lambda_4 \rightarrow \lambda_4 < 0$.
 ▶ Remove c_4 from S.
 ▶ Compute p from new $S = \emptyset$.
▶ At q_3,
 ▶ $\nabla f(q_3) = 0$.
 ▶ q_3 is minimizer on S.

Feasible point methods, non-linear equality constraints

- Consider a non-linear problem with non-linear equality constraints:
 $\min f(x),
 \text{s.t. } c(x) = 0.$

- If we construct the Lagrangian function
 $\mathcal{L}(x, \lambda) = f(x) - \lambda^T c(x),$
 we may apply Newton’s method on the first order condition on \mathcal{L}, i.e.
 $\nabla \mathcal{L}(x, \lambda) = 0.$
Feasible point methods, non-linear equality constraints

Cont’d

- The Newton formula for this problem is
 \[
 \begin{bmatrix}
 x_{k+1} \\
 \lambda_{k+1}
 \end{bmatrix} = \begin{bmatrix}
 x_k \\
 \lambda_k
 \end{bmatrix} + \begin{bmatrix}
 p_k \\
 \nu_k
 \end{bmatrix}.
 \]

- The vectors \(p_k \) and \(\nu_k \) are found as the solution of the Newton equation for the Lagrangian function:
 \[
 \nabla^2 \mathcal{L}(x_k, \lambda_k) \begin{bmatrix}
 p_k \\
 \nu_k
 \end{bmatrix} = -\nabla \mathcal{L}(x_k, \lambda_k).
 \]

- Thus, for each iteration we calculate an update for both the primal parameters \(x \) and the dual parameters \(\lambda \).

Sequential Quadratic Programming (SQP)

Cont’d

- Derivation: The problem
 \[
 \min_{p} \quad \frac{1}{2} p^T \nabla^2_{xx} \mathcal{L} p + p^T \nabla_x \mathcal{L} \]
 \[
 \text{s.t.} \quad \nabla c^T p + c = 0
 \]
 has the Lagrangian function
 \[
 \mathcal{M}(p, \nu) = \frac{1}{2} p^T \nabla^2_{xx} \mathcal{L} p + p^T \nabla_x \mathcal{L} - (\nabla c^T p + c)^T \nu.
 \]

- The first order conditions are
 \[
 \nabla_p \mathcal{M} = \nabla^2_{xx} \mathcal{L} p + \nabla_x \mathcal{L} - \nabla c \nu = 0
 \]
 \[
 \nabla_\nu \mathcal{M} = \nabla c^T p + c = 0
 \]
 or
 \[
 \begin{bmatrix}
 \nabla^2_{xx} \mathcal{L} & -\nabla c \\
 -\nabla c^T & 0
 \end{bmatrix} \begin{bmatrix}
 p \\
 \nu
 \end{bmatrix} = \begin{bmatrix}
 -\nabla_x \mathcal{L} \\
 c
 \end{bmatrix}.
 \]

SQP for least squares problems

- For a least squares problem with non-linear equality constraints
 \[
 \min_{x} \quad f(x) = \frac{1}{2} \|r(x)\|^2
 \]
 \[
 \text{s.t.} \quad c(x) = 0
 \]
 we have
 \[
 \nabla f = J^T r, \quad \nabla^2 f = J^T J + Q.
 \]

- The Lagrangian function is
 \[
 \mathcal{L} = \frac{1}{2} \|r\|^2 - c^T \lambda
 \]
 with partial derivatives
 \[
 \nabla_x \mathcal{L} = J^T r - \nabla c \lambda, \quad \nabla_\lambda \mathcal{L} = -c,
 \]
 \[
 \nabla^2_{xx} \mathcal{L} = J^T J + Q - \sum_i \lambda_i \nabla^2_{xx} G_i, \quad \nabla^2_{\lambda \lambda} \mathcal{L} = 0,
 \]
 \[
 \nabla^2_{\lambda x} \mathcal{L} = -\nabla c, \quad \nabla^2_{xx} \mathcal{L} = -\nabla c^T.
 \]
Together
\[
\nabla L = \begin{bmatrix} J^T r - \nabla c \lambda \\ -c \end{bmatrix}, \quad \nabla^2 L = \begin{bmatrix} J^T J + Q - Q_c & -\nabla c \\ -\nabla c^T & 0 \end{bmatrix}.
\]

If we ignore the curvatures \(Q \) and \(Q_c \) we get the Gauss-Newton Equation for constrained problems
\[
\begin{bmatrix} J^T J & -A \\ -A^T & 0 \end{bmatrix} \begin{bmatrix} p \\ \nu \end{bmatrix} = \begin{bmatrix} -J^T r + A^T \lambda \\ c \end{bmatrix},
\]
where \(A = \nabla c^T \).

If we denote the updated Lagrangian vector with \(\lambda' = \lambda + \nu \), we may solve the following, equivalent, system equation:
\[
\begin{bmatrix} 0 & 0 & A \\ A^T & J^T & 0 \\ I & J & 0 \end{bmatrix} \begin{bmatrix} \lambda' \\ w \\ p \end{bmatrix} = \begin{bmatrix} -c \\ -r \\ 0 \end{bmatrix}.
\]
Thus, with this formulation we do not need to estimate the Lagrangian multipliers. Instead we calculate an estimate for each iteration.

Obtaining global convergence

\[\mathcal{M}(x_k, \rho_k) = f(x_k) + \rho_k c(x_k)^T c(x_k) = f(x_k) + \rho_k \sum_{i=1}^{m} c_i(x_k)^2, \quad \rho_k > 0,\]
where the penalty parameter \(\rho \) controls the penalty term for violating the constraints.
To obtain global convergence, the sequence \(\{\rho_k\} \) must contain a non-decreasing sequence.

Initially, the penalty value is low, the constraint is relaxed and the method is allowed to take short-cuts outside the feasible set.

As the penalty parameter is increased, the iterate is forced to stay closer and closer to the constraint.

The calculation of the penalty weights \(\rho_k \) is crucial to the efficiency of a merit-function based method.

Increasing \(\rho \) too slowly will allow the iterates to stay unfeasible too long, increasing them too fast will force the iterates to follow the constraints unnecessarily close.

Consider the constrained minimization problem

\[
\min f(x) \text{ s.t. } x \in S,
\]

where \(S \) is the feasible set.

Define

\[
\sigma(x) = \begin{cases}
0 & x \in S; \\
\infty & \text{otherwise}.
\end{cases}
\]

The constrained problem may thus be rewritten as an unconstrained problem

\[
\min f(x) + \sigma(x).
\]

Since \(\sigma(x) = \infty \) for all infeasible points, the minimum will be attained in a feasible point.

Penalty and barrier methods formulate and solve a sequence of problems replacing \(\sigma(x) \) with a continuous function that approaches \(\sigma(x) \) as \(k \to \infty \).

Penalty methods impose a penalty for violating a constraint, barrier methods impose a penalty for getting too close to the constraint from the inside of the feasible set.

Barrier methods require the iterates to initially be feasible and approach the constraints from the inside.

Barrier methods are suitable for inequality constrained problems.

Consider the problem

\[
\min f(x) \text{ s.t. } g_i(x) \geq 0, \ i = 1, \ldots, m.
\]

Define the function \(\phi(x) \) such that \(\phi(x) \to \infty \) as \(g_i(x) \to 0 \), e.g.

\[
\phi(x) = -\sum_{i=1}^{m} \log(g_i(x))
\]

or

\[
\phi(x) = \sum_{i=1}^{m} \frac{1}{g_i(x)}.
\]

This function will act as a barrier when \(x \) approaches the border of the feasible set from the inside.

Barrier methods

The barrier function is defined as

\[
\beta(x, \mu) = f(x) + \mu \phi(x),
\]

where \(\mu \) is called a barrier parameter.

Barrier methods solve the sequence of problems

\[
\min_x \beta(x, \mu_k)
\]

for a sequence \(\{\mu_k\} \) of positive barrier parameters that decrease monotonically to zero.

As \(\mu_k \) approaches zero, the penalty for being close to the constraint will decrease, and the point \(x \) will be allowed to come closer and closer to the constraints.

With smaller \(\mu_k \), the barrier will become more and more vertical and the Hessian of the barrier function will become more and more ill conditioned.
Penalty methods

- Penalty methods allow infeasible iterates and are thus suitable also for equality constrained problems. Consider the problem

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad g_i(x) = 0, \quad i = 1, \ldots, m.
\end{align*}
\]

- Define the function \(\psi(x) \) such that \(\psi(x) = 0 \) as \(x \in S \), otherwise \(\psi(x) > 0 \) and \(\psi(x) \to 0 \) as \(x \to S \).
- The function \(\psi(x) \) will impose a penalty that depends on how infeasible the point \(x \) is.
- An example of such a penalty is the quadratic-loss function

\[
\psi(x) = \frac{1}{2} \sum_{i=1}^{m} g_i(x)^2 = \frac{1}{2} c(x)^T c(x).
\]

Penalty methods

- The weight of the penalty is controlled by a positive penalty parameter \(\rho \).
- As \(\rho \) increases, the function \(\rho \psi \) approaches the ideal penalty \(\sigma \).
- The penalty function is defined as

\[
\pi(x, \rho) = f(x) + \rho \psi(x).
\]

- Penalty methods solve a sequence of problems

\[
\min_{x} \pi(x, \rho_k)
\]

for an increasing sequence \(\{\rho_k\} \).
- As \(\rho_k \to \infty \), the iterates \(x_k \) will be forced closer and closer to the feasible set \(S \).
- As with the barrier methods, for large \(\rho_k \), the walls will be almost vertical and the Hessian of the penalty function will be ill conditioned.