Challenges

1. Capacity:
 ▶ Collections too large for manual indexing.
2. Consistency:
 ▶ Output of keyword extraction depends on the indexer.
3. Synonymy:
 ▶ Several words with the same meaning.
4. Polysemy:
 ▶ One word with several meanings.
5. Term weighting:
 ▶ Some words carry more information than others.
 ▶ Information content depends on the context.

Evaluation of information retrieval systems

- Recall: \[
\frac{\text{# retrieved relevant documents}}{\text{# relevant documents}}\]
- Precision: \[
\frac{\text{# retrieved relevant documents}}{\text{# retrieved documents}}\]

- Both ratings should be close to 1.
The vector space model

1. “Bag of words” approach:
 - Rely only on word frequencies.
 - Ignore other language structures (sentences, paragraphs, etc.).
2. Each document represented by a vector \(\mathbf{a} \).
3. Entry \(\mathbf{a}_i \) represents how important term \(i \) is in describing the content of the document.
4. Gather \(d \) documents with \(t \) terms into a \(t \times d \) term-by-document matrix
 \[
 \mathbf{A} = \begin{bmatrix}
 \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_d
 \end{bmatrix}.
 \]
5. The columns of \(\mathbf{A} \) are called document vectors.
6. The rows of \(\mathbf{A} \) are called term vectors.

Vector space representation

Example

- Documents:
 - D1 How to Bake Bread without Recipes
 - D2 The Classic Art of Viennese Pastry
 - D3 Numerical Recipes: The Art of Scientific Computing
 - D4 Breads, Pastries, Pies and Cakes: Quantity Baking Recipes
 - D5 Pastry: A Book of Best French Recipes

- Term-by-document matrix

\[
\mathbf{A} = \begin{bmatrix}
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix}
\]

The key idea of the vector space model

Interpret documents as vectors and use geometry to measure similarity.

- Recall the cosine formula:
 \[
 \cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|},
 \]
 where \(\theta \) is the angle between \(\mathbf{x} \) and \(\mathbf{y} \).
- Note: In the special case that \(\|\mathbf{x}\| = \|\mathbf{y}\| = 1 \), the formula simplifies to
 \[
 \cos \theta = \mathbf{x}^T \mathbf{y}.
 \]
Weighting of matrix elements

\[a_{ij} = \ell_{ij} g_i \]

1. \(\ell_{ij} \): local weight of term \(i \) in document \(j \)
 - Frequently occurring terms should receive a large weight...
 - ...but not too large to drown out less frequent words.
2. \(g_i \): global weight of term \(i \) in the collection
 - Information-rich words should receive a large weight...
 - ...but not if they occur in most of the documents.

Example: The popular log-entropy term weighting scheme chooses

\[\ell_{ij} = \log_2 (1 + f_{ij}), \quad g_i = 1 + \sum_k p_{ik} \log_2 \frac{p_{ik}}{\log_2 d}, \]

where \(f_{ij} \) is the term frequency of term \(i \) in document \(j \) and

\[p_{ij} = \frac{f_{ij}}{\sum_k f_{ik}} \]

is large if the term occurs mostly in document \(j \).

Example

Documents: Wikipedia pages for
- D1 Coffee
- D2 Gevalia
- D3 Java (island)
- D4 Java (coffee)
- D5 Java (language)
- D6 Starbucks

Term frequency of top 10 words

\[
\begin{bmatrix}
244 & 9 & 2 & 15 & 0 & 78 \\
4 & 0 & 0 & 0 & 85 \\
23 & 0 & 0 & 0 & 41 \\
52 & 0 & 0 & 0 & 0 \\
3 & 3 & 0 & 0 & 144 \\
9 & 0 & 1 & 0 & 34 \\
0 & 0 & 0 & 43 & 0 \\
8 & 0 & 1 & 17 & 9 \\
22 & 0 & 0 & 0 & 12 \\
20 & 0 & 4 & 0 & 5
\end{bmatrix}
\]

Log-term frequency of top 10 words

\[
L = \begin{bmatrix}
7.94 & 3.32 & 1.58 & 4 & 0 & 6.30 \\
2.32 & 0 & 0 & 0 & 0 & 6.43 \\
4.58 & 0 & 0 & 5.39 & 1 & \\
5.73 & 0 & 0 & 0 & 0 & \\
2 & 2 & 0 & 0 & 1 & 5.49 \\
3.32 & 0 & 1 & 0 & 2 & 5.13 \\
0 & 0 & 0 & 5.46 & 0 & \\
3.17 & 0 & 1 & 1 & 4.17 & 3.32 \\
4.52 & 0 & 0 & 0 & 3.70 & \\
4.39 & 0 & 2.32 & 0 & 2 & 2.58
\end{bmatrix}
\]

Document-relative frequency of top 10 words

\[
P = \begin{bmatrix}
0.70 & 0.03 & 0.01 & 0.04 & 0 & 0.22 \\
0.04 & 0 & 0 & 0 & 0 & 0.96 \\
0.35 & 0 & 0 & 0 & 0.63 & 0.02 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0.06 & 0.06 & 0 & 0 & 0.02 & 0.86 \\
0.19 & 0 & 0.02 & 0 & 0.06 & 0.72 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0.22 & 0 & 0.03 & 0.03 & 0.47 & 0.25 \\
0.65 & 0 & 0 & 0 & 0 & 0.35 \\
0.62 & 0 & 0.12 & 0 & 0.09 & 0.16
\end{bmatrix}
\]

\[g = \begin{bmatrix}
0.53 \\
0.90 \\
0.60 \\
1 \\
0.70 \\
0.55 \\
1 \\
0.31 \\
0.64 \\
0.41
\end{bmatrix}
\]
Weighting of matrix elements

Example

<table>
<thead>
<tr>
<th>Coffee</th>
<th>Gevalia</th>
<th>Java (island)</th>
<th>Java (coffee)</th>
<th>Java (language)</th>
<th>Starbucks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.20</td>
<td>1.76</td>
<td>0.84</td>
<td>2.12</td>
<td>0</td>
<td>3.34</td>
</tr>
<tr>
<td>2.08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.77</td>
<td></td>
</tr>
<tr>
<td>2.74</td>
<td>0</td>
<td>0</td>
<td>3.22</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>5.73</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1.40</td>
<td>1.40</td>
<td>0</td>
<td>0.70</td>
<td>3.84</td>
<td></td>
</tr>
<tr>
<td>1.82</td>
<td>0.55</td>
<td>0</td>
<td>1.10</td>
<td>2.82</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.46</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.99</td>
<td>0.31</td>
<td>0.31</td>
<td>1.30</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>2.88</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.36</td>
<td></td>
</tr>
<tr>
<td>1.78</td>
<td>0.94</td>
<td>0.81</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$A = \text{diag}(g)L = \begin{bmatrix}
4.20 & 1.76 & 0.84 & 2.12 & 0 & 3.34 \\
2.08 & 0 & 0 & 0 & 5.77 & \\
2.74 & 0 & 0 & 3.22 & 0.60 & \\
5.73 & 0 & 0 & 0 & 0 & \\
1.40 & 1.40 & 0 & 0.70 & 3.84 & \\
1.82 & 0.55 & 0 & 1.10 & 2.82 & \\
0 & 0 & 0 & 5.46 & 0 & \\
0.99 & 0.31 & 0.31 & 1.30 & 1.03 & \\
2.88 & 0 & 0 & 0 & 2.36 & \\
1.78 & 0.94 & 0.81 & 1.05 &
\end{bmatrix}$

Query matching

- Model a query q as a t-vector (document vector).
- Compute for each document j

$$\cos \theta_j = \frac{a_j^T q}{\|a_j\| \|q\|}.$$

- Note that a_j and q are generally very sparse.
- A value of the cosine similarity $\cos \theta_j$ close to 1 means that document j is relevant to the query.
- Set threshold ϵ to make a binary decision of relevance for each document:

$$(\text{document } j \text{ is relevant}) \leftrightarrow \cos \theta_j \geq \epsilon.$$
Query matching

Example

\[
\cos \theta_j = (\tilde{A}^T \tilde{q})^T = \begin{bmatrix}
0.09 & 0.24 & 0.03 & 0.28 & 0 & 0.08 \\
0.08 & 0.31 & 0.02 & 0.19 & 0.01 & 0.12 \\
0.09 & 0.17 & 0.02 & 0.19 & 0 & 0.15 \\
0.06 & 0 & 0 & 0 & 0.09 & 0.01 \\
0.04 & 0 & 0 & 0 & 0.17 & 0.01 \\
\end{bmatrix}
\]

Low-rank approximation

1. Approximate \(A \) by

\[
\tilde{A} \approx A
\]

such that

\[
k := \text{rank}(\tilde{A}) \ll \text{rank}(A).
\]

2. **Important:** Work with \(\tilde{A} \) in factored form, e.g.

\[
\tilde{A}_{m \times n} = B_{m \times k} C^T_{k \times n}
\]

where \(B \) and \(C \) have only \(k \) columns.

Low-rank approximation

Motivations:

1. Data compression.
2. Computational efficiency.
3. Improved performance (recall and precision).
4. Identification of topics and concepts.

Justifications:

1. \(A \) is often rank-deficient in practice
2. \(A \) and \(A + E \) can be considered equally good representations if, e.g.,

\[
\frac{\|E\|}{\|A\|} \leq 20\%
\]

due to, e.g., inconsistent indexing.
3. \(A + E \) might have much lower rank than \(A \).
QR-based low-rank approximation

Query matching with $A = Q_AR_A$

Note that

$$a_j^T q = (Ae_j)^T q = (Q_AR_Ae_j)^T q = (Q_Ar_j)^T q = r_j^T (Q_A^T q) = r_j^T q,$$

where

- $r_j := R_Ae_j$ is the j-th column of R_A.
- $\tilde{q} := Q_A^T q$ has a geometric interpretation (explained next).

Orthogonal projection

Note that

$$lq = QQ^T q = [Q_A \quad Q_A^\perp] \left[\begin{array}{c} R_A \\ 0 \end{array} \right] q = Q_A Q_A^T q + Q_A^\perp Q_A^T q = q_A + q_A^\perp.$$

- q may be expressed as a sum of two orthogonal vectors:
 - q_A, which is in the column space $C(A)$ of A.
 - q_A^\perp, which is in $N(A^T)$, which is orthogonal to $C(A)$.
- Interpretation: The projection $Q_A Q_A^T q$ represents the part of the query that is relevant to the document collection.

QR factorization

- We can factor A into
 $$A = QR,$$
 where Q is $t \times t$ and orthogonal ($Q^T Q = I$), and R is upper trapezoidal ("rectangular and upper triangular").
- In particular, for "tall-and-narrow" matrices A ($t \geq d$) we have
 $$A = [Q_A \quad Q_A^\perp] \left[\begin{array}{c} R_A \\ 0 \end{array} \right] = Q_AR_A,$$
 which means that Q_A is an orthonormal basis for $C(A)$.
Geometric interpretation and similarity

- Cosine similarity with \(A \):
 \[
 \cos \theta_j = \frac{a_j^T q}{\|a_j\| \|q\|}.
 \]

- Cosine similarity with \(A = Q_A R_A \):
 \[
 \cos \theta_j = \frac{r_j^T q}{\|r_j\| \|q\|} < \frac{r_j^T \tilde{q}}{\|r_j\| \|\tilde{q}\|} =: \cos \theta_j',
 \]
 where \(\tilde{q} = Q_A^T q \).

- In words, a price we pay when using the rank-\(k \) approximation for matching, is that a document may look more relevant than it really is.

- This is referred to as an “increase in recall at the risk of reduced precision”.

Query matching with \(A \approx Q_A R_A \)

1. Define \(Q_A := Q_1 \) and \(R_A := [R_{11} \ R_{12}] \ P^T \).
2. Apply the same derivation as before.
3. Also apply the same geometric interpretation.

QR-based low-rank approximation

- Using QR with column pivoting, we can compute
 \[
 AP = QR = [Q_1 \ \ Q_2] \begin{bmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix}
 \]
 such that:
 \[
 \begin{align*}
 &P \text{ is a permutation.} \\
 &R_{11} \text{ is square, upper triangular, and invertible.} \\
 &\|R_{22}\| \text{ is “small” compared to } \|R\| \text{ (and } \|A\|). \\
 \end{align*}
 \]

- Define the approximation
 \[
 AP + E = [Q_1 \ Q_2] \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix} = Q_1 [R_{11} \ R_{12}]
 \]
 obtained by setting \(R_{22} \) to zero.

- Note that
 \[
 \|E\|_F = \| \begin{bmatrix} 0 & 0 \\ 0 & -R_{22} \end{bmatrix} \|_F = \| R_{22} \|_F.
 \]

SVD-based low-rank approximation
SVD-based low-rank approximation

- Using the SVD decomposition, we can write
 \[A = U \Sigma V^T = \sum_{i} U_i \sigma_i V_i^T \approx \sum_{i} U_i \sigma_i V_i^T = U_k \Sigma_k V_k^T, \]
 where \(U_k \Sigma_k V_k^T \) is the truncated SVD.
- The approximation error is given by
 \[\|A - A_k\|_F^2 = \sum_{i=k+1}^{\min\{t,d\}} \sigma_i^2. \]

Computing an SVD-based approximation

- Note that
 \[\|A\|_F^2 = \sum_{i=1}^{\min\{t,d\}} \sigma_i^2 \]
 \[= \sum_{i=1}^{k} \sigma_i^2 + \sum_{i=k+1}^{\min\{t,d\}} \sigma_i^2 \]
 \[= \sum_{i=1}^{k} \sigma_i^2 + \|A - A_k\|_F^2. \]
- Thus, we can compute the relative approximation error
 \[\frac{\|A - A_k\|_F}{\|A\|_F} \]
 by computing \(\|A\|_F \) and the first \(k \) singular values.

Query matching with \(A \approx U_k \Sigma_k V_k^T \)

1. Define \(Q_A := U_k \) and \(R_A := \Sigma_k V_k^T \).
2. Apply the same derivation as before.
3. Also apply the same geometric interpretation.

Summary

- We define similarity via the cosine formula
 \[\cos \theta_j := \frac{a_j^T q}{\|a_j\|_2 \|q\|_2}. \]
- When working with a rank-\(k \) approximation of the form
 \[A \approx Q_A R_A, \]
 where \(Q_A^T Q_A = I_k \), then we use the modified formula
 \[\cos \theta'_j := \frac{r_j^T \bar{q}}{\|r_j\|_2 \|\bar{q}\|_2}, \]
 where
 \[r_j := R_A e_j = R_A(:,j), \quad \bar{q} := Q_A^T q. \]
Relevance feedback

1. To enhance a query, we can combine it with a relevant document.
2. Suppose document j is relevant for query q.
3. Then we define

$$q_{\text{new}} := QA^T q + a_j$$

$$\approx QA^T q + QA R e_j$$

$$= QA(Q T q + R e_j)$$

$$= QA(q + r_j).$$

Adding new documents

- When new documents are added to the collection, we can
 2. Fold the new documents into the rank-reduced space (cheap but possibly inaccurate).
 3. Update the truncated SVD (compromise w.r.t. cost and accuracy).

1. Recompute SVD approximation

- Add the new document \hat{p} as a column of \hat{A}

$$\hat{A} = \begin{bmatrix} \hat{A} & \hat{p} \end{bmatrix}.$$

- Compute new SVD approximation $U_k \Sigma_k V_k^T$ of \hat{A}.
2. Folding-in

- Consider the projection of the new document \(\hat{p} \) on the approximated subspace
 \[p = U_k U_k^T \hat{p}. \]

- Append \(d = U_k^T \hat{p} \) as a new column of \(\Sigma_k V_k^T \)
 \[V'_k = [V_k \quad \hat{p}^T U_k \Sigma_k^{-1}] . \]

- Note: \(V'_k \) is no longer orthogonal.

3. Approximate SVD updating

Adding new terms:
 \[B := \begin{bmatrix} A_k \\ T \end{bmatrix} . \]

1st step:
- Rewrite \(B \):
 \[B = \begin{bmatrix} U_k & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma_k & 0 \\ TV_k & I \end{bmatrix} \begin{bmatrix} V_k \quad (I - V_k V_k^T) T^T \end{bmatrix}^T. \]

Approximate SVD updating

2nd step:
- Compute pivoted QR factorization of \((I - V_k V_k^T) T \):
 \[(I - V_k V_k^T) T \Pi_V = \hat{V}_k R_r. \]

3rd step:
- Rewrite \(B \):
 \[B = \begin{bmatrix} U_k & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma_k & 0 \\ TV_k & I \end{bmatrix} \begin{bmatrix} V_k \quad \hat{V}_k \end{bmatrix}^T. \]

Approximate SVD updating

4th step:
- Compute the truncated SVD:
 \[\begin{bmatrix} \Sigma_k & 0 \\ TV_k & \Pi_V R_r^T \end{bmatrix} = \begin{bmatrix} P_k & P_{\perp k} \\ 0 & \hat{\Sigma}_r \end{bmatrix} \begin{bmatrix} 0 & Q_k^\perp \\ \hat{\Sigma}_k & Q_k \end{bmatrix}^T \approx P_k \hat{\Sigma}_k Q_k^T. \]

5th step:
- Identify the truncated SVD of \(B \):
 \[B = \left(\begin{bmatrix} U_k & 0 \\ 0 & I \end{bmatrix} P_k \right) \hat{\Sigma}_k \left(\begin{bmatrix} V_k \quad \hat{V}_k \end{bmatrix} Q_k \right)^T. \]
Approximate SVD updating

Adding new documents:

\[B := [A_k \quad D] . \]

1st step:
- Compute pivoted QR factorization of \((I - U_k U_k^T)D\):

\[(I - U_k U_k^T)D \Pi_U = \hat{U}_k R_s . \]

2nd step:
- Form the matrix

\[\begin{bmatrix} \Sigma_k & U_k^T D \\ 0 & R_s \Pi_U^T \end{bmatrix} \]

3rd step:
- Compute the truncated SVD:

\[\begin{bmatrix} \Sigma_k & U_k^T D \\ 0 & R_s \Pi_U^T \end{bmatrix} \approx P_k \hat{\Sigma}_k Q_k^T . \]

Approximate SVD updating

4th step:
- Identify the truncated SVD of \(B\):

\[B_k = ([U_k \quad \hat{U}_k] P_k) \hat{\Sigma}_k \begin{bmatrix} V_k & 0 \\ 0 & I_s \end{bmatrix} Q_k^T . \]

Final step:
- Compute the orthonormal factors

\[U_B := [U_k \quad \hat{U}_k] P_k, \quad V_B := \begin{bmatrix} V_k & 0 \\ 0 & I_s \end{bmatrix} Q_k . \]

Approximate SVD updating

Now rewrite \(B\) as

\[B = [A_k \quad D] = [U_k \quad \hat{U}_k] \begin{bmatrix} \Sigma_k & U_k^T D \\ 0 & R_s \Pi_U^T \end{bmatrix} \begin{bmatrix} V_k^T & 0 \\ 0 & I_s \end{bmatrix} . \]

Non-negative Matrix Factorization (NMF)
What is NMF?

1. Given a non-negative $m \times n$ matrix A, find non-negative matrices W (of size $m \times k$) and H (of size $k \times n$) such that

 $$A \approx WH.$$

2. More precisely, minimize the cost function

 $$f(W, H) = \frac{1}{2} \|A - WH\|_F^2$$

 over the non-negative matrices W and H.

3. This is a non-convex constrained optimization problem and hence very difficult.

4. Many optimization methods have been proposed. We will look at the original multiplicative update formulas and a basic alternating least squares method.

Why NMF?

1. Suppose A is a non-negative data matrix.

2. Then

 $$Ae_j \approx WHe_j = Wh_j$$

 implies that column j of A is a linear combination of the columns of W, with the weights given by the j-th column of H.

3. Since W and H are non-negative, no cancellation occurs and hence $A \approx WH$ decomposes the columns of A as sums of parts.

4. The parts are given by the columns of W.

5. In information retrieval, the parts can be interpreted as topics.

Multiplicative update rule for NMF

Algorithm due to Lee and Seung:

1. Initialize W and H to random non-negative matrices
2. while not converged do
3. Update the elements of W with the formula

 $$(W)_{ij} = (W)_{ij} \frac{(AH^T)_{ij}}{(WHH^T)_{ij} + \epsilon}$$

4. Normalize the columns of W
5. Update the elements of H with the formula

 $$(H)_{ij} = (H)_{ij} \frac{(W^T A)_{ij}}{(W^T WH)_{ij} + \epsilon}$$

6. end while

Note: $\epsilon > 0$ is a small number chosen to avoid overflow.

Alternating least squares for NMF

Algorithm due to Berry et al.:

1. Initialize W and H to random non-negative matrices
2. while not converged do
3. Solve the linear least squares problem

 $$\min_W \|A - WH\|_F$$

4. Set all negative entries in W to 0
5. Solve the linear least squares problem

 $$\min_H \|A - WH\|_F$$

6. Set all negative entries in H to 0
7. end while

Note: No convergence theory.