Sensors for autonomous vehicles

Thomas Hellström
Dept. of Computing Science
Umeå University
Sweden

Problems with mobility

Autonomous Navigation
- "Where am I?" - Localization
- "Where have I been" - Map building
- "Where am I going?" - Path planning
- "How do I get there?" - Path tracking

Additional problems:
- "Will I hit anything?" - Obstacle detection
- "What will I hit?" - Classification
- "How can I avoid it?" - Obstacle avoidance

Sensors are essential

1 Object sensors for detection and identification
2 Pose sensors for localization

Object sensors

- Ultrasonic sonars
- Regular cameras
- Laser scanners
- 3D cameras
- Radars

Ultrasonic sonars

- Calculate distance based on the time of flight t:
 \[d = \frac{1}{2} c t \]
- $c = c_0 + 0.6 T$
- $c_0 = 331$ m/s
- T: temperature in degrees Celsius
- Sensitive to dirt
- WIDE lobe
- Not very suitable for heavy outdoor use

* Emits a "chirp" (50 KHz) and "listens" for bounce back
* Used to determine range based on time of flight
* The object can be anywhere on the lobe perimeter
Regular cameras

- An image is a huge array of values of individual pixels
- Taken individually, these numbers are almost meaningless
- A robot needs information like "object ahead", "table to the left", or "person approaching" to perform its tasks

Computer Vision

- is the conversion of low level information picture information into high level information
- Separate field of study from robotics
- Includes analysis of signals from:
 - cameras
 - thermal sensors
 - X-ray detectors
 - laser range finders
 - synthetic aperture radar

Computer Vision

- Segmentation
 (where are the physical objects?)
- Classification
 (what are these objects?)
- 3D reconstruction
 (estimating ranges from 2D pictures)
- ...

Range from Vision

- Stereo camera pairs
- Light stripers
- Laser scanners
- 3D cameras

Stereo Camera Pairs

- A 3-D structure is computed from two or more images taken from different viewpoints
- Same technique as humans and animals use
- Heavy computations
- Delicate hardware

Laser Scanner

- Measures distance in a plane
- 181 (or 361) thin laser beams are emitted in a plane
- The time of flight of the signal is measured
- Max distance: 50m
- Resolution: 5cm
- Most often eye safe
Laser Scanner

Example:

- Laser scanner: photo coverage

3D Laser scanner

Riegl LMS-Z210

- 3D laser scanner
- Measurement range up to 150-350 m depending on reflectivity
- Minimum range 2 m
- Measurement accuracy typ. +/- 2.5 cm
- Eye safety Class 1 for the scanned beam

3D Camera

- **CSEM SwissRanger**
 - (two other manufacturers exist)
 - Works like this:
 - Illuminates the scene with frequency modulated infrared light
 - Measures the phase shift of reflected light
 - This gives distance for each pixel
 - Reconstructs the relative xyz coordinates
 - Maximum range of 7.5 m
 - 144 x 176 pixels
 - Field of view: 40 degrees
 - Frame rate ~ 30 Hz
 - No moving parts (except for a fan)
 - 5000 euro

Radar

- **Principle of radar:** The radar emits a radio signal (green) which is scattered in all directions (blue). The “time-of-flight” t for the signal, back to the radar gives the distance d:

 $d = \frac{c t}{2}$

- Typically used in ships and airplanes
- Also as robot sensors:

- **CSEM Radar**
 - If the object moves, the frequency of the scattered wave changes.
 - A doppler radar measures the shift in frequency and computes the speed (in addition to distance)
 - Ignores all stationary objects
 - Used as back-up alarms and also as robot sensors
Radar

Sequential Lobing Radar (Tyco)
- Normally used as frontal radar for cars
- Can track 10 obstacles closer than 30 m
- Range calculated by time of flight
- Bearing calculated by comparing two different patterns sent out by the antenna

Sensor fusion
- Most object sensors are noisy and do not give crisp information about the presence of objects or pose
- Common to use a probabilistic approach: Each sensor readout gives a probability for objects occupying areas or for a certain pose
- Many readouts are fused into a combined opinion

An occupancy grid
is used to fuse object sensor readings and to create a map of the surrounding terrain.

 Sensors for localization
- A little more than “Where am I?”
- A vehicle has (at least) 6 degrees of freedom (DOF) expressed by the pose: $(x, y, z, \phi, \theta, \psi)$
 - Position = (x, y, z)
 - Attitude = roll, pitch, yaw = (ϕ, θ, ψ)
 = (phi, theta, psi)

Pose

Definitions:
- Roll (a.k.a. “bank angle”) ϕ: the angle between y and the x-y plane. $-\pi < \phi < \pi$
- Pitch (a.k.a. “elevation”) θ: the angle between x' and the x-y plane. $-\pi < \theta < \pi$
- Yaw (a.k.a. “heading” or “azimuth”) ψ: the angle between x and the projection of x' on the x-y plane. $-\pi < \psi < \pi$

The signs of the angles are defined in a right-handed coordinate system.

Using the Right-Hand Rule
To remember positive and negative rotation directions:
- Open your right hand
- Stick out your thumb
- Aim your thumb in an axis positive direction
- Curl your fingers around the axis
- The curl direction is a positive rotation

<table>
<thead>
<tr>
<th>Roll</th>
<th>Pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. X-axis rotation</td>
<td>b. Y-axis rotation</td>
</tr>
<tr>
<td>c. Z-axis rotation</td>
<td>Yaw</td>
</tr>
</tbody>
</table>
Pose sensors

Absolute:
- GPS
-

Dead reckoning (relative):
- Wheel odometry
- Accelerometers
- Gyroscopes

GPS
- Delivers position for a moving receiver:
 - Latitude, Longitude, Altitude
 - Speed and direction of movement can be estimated

Dead reckoning
Relative motion: Advance previous pose through displacement information:
- The simplest kind is called *odometry*:
 - Steering angle and velocity from actuators and shaft encoders.
- Accelerometers:
 - Use Newton's 2nd law: \(F = ma \) where \(a \) is the second derivative of the displacement, i.e. changes in \((z,y,z) \).
- Gyroscopes:
 - Measures rotations, i.e. changes in \((\phi, \theta, \psi) \)
- Cameras
- Laser scanners

Wheel Odometry
- Compute changes in the 2D-pose \((x,y,\theta)\) from steering angle and velocity
 - Steering angle from angle sensor
 - Velocity from shaft encoders or speed sensor
- Translate steering angle and velocity to \((x,y,\theta)\): Kinematics equations!
- Problems with wheel odometry:
 - The wheels move but not the robot (spinning)
 - The robot moves but not the wheels (slipping, sliding)
 - The ground is not flat
Causes drift!

Shaft encoders
Counts rotation steps for the wheels or engine

Localization with odometry

![Graph showing odometry position compared to GPS and position error in odometry after a time T](image-url)
Dead reckoning

Accelerometers
- A variant of "Dead reckoning" for measuring change in position (x, y, z)
- Common in airplanes, missiles and sub-marines since the 50’s.
 1. \mathbf{F} is measured with 3 accelerometers
 2. $\mathbf{F} = m \mathbf{a}$
 3. Compute displacement by integrating twice a twice:

INS (Inertial Navigation Systems)
- 3 accelerometers and 3 gyroscopes
- Measures changes in the pose (x, y, z, ϕ, θ, ψ)
- Good accuracy for short periods
- I.e. same problem as wheel odometry, but not sensitive to slipping and sliding

Gyrosopes
- Measures rotation with one, two or three DOF
- The inertia of the spinning wheel gives a reference for rotations
- Estimates (ϕ, θ, ψ) by summing up gyroscope rotations
- Fiber optical or solid state

Ground Speed Radar
Measures the real ground speed
Change in position can be computed

Localization with Laser scanners

Absolute localization using laser
Manually drive the path
Save laser snapshots and laser scanner poses in a database
Absolute localization using laser

Autonomously repeat the path
At each step:
1. Take a snapshot
2. Find the most matching snapshot in the DB
3. Find the optimal $\Delta x, \Delta y, \Delta \Phi$
4. Estimate pose (x, y, Φ) of robot

Other pose sensors

- **Mechanical tilt sensors**
 - Measures absolute attitude (ϕ, θ)
- **Magnetic compass**
 - Measures the earth magnetic fields along 3 axes. This gives three angles
 - Very sensitive to metal objects!