Fundamentals of Computer Science, Spring 2014

Assignment 4

Due date: February 27, 2014

Mandatory exercises

1) Construct a context-free grammar for the language

\[L = \{(ab)^n c^m | n, m \in \mathbb{N} \land n \neq m\}. \]

2) Construct a Turing machine \(M = (Q, \Sigma, \Gamma, \delta, \square, q_0, F) \) with input alphabet \(\Sigma = \{0, 1\} \) that computes the reversal function. In other words, for every binary word \(w \) we have,

\[q_0w \Rightarrow^* q_f w^R, \]

where \(q_f \) is some accepting state and \(w^R \) is the reversal of \(w \). For example, the reversal of 00101 is 10100.

Define all transitions of \(M \) and briefly explain how \(M \) works.

Voluntary exercises (for higher grades than 3)

3) A 2-stack automaton is a pushdown automaton with 2 stacks, i.e., an automaton \(M = (Q, \Sigma, \Gamma, \delta, q_0, F) \) where

\[\delta : Q \times \Sigma \times \Gamma \times \Gamma \rightarrow \text{Fin}(P(Q \times \Gamma^* \times \Gamma^*)). \]

The transition function should be interpreted as follows. If

\[(p, w_1, w_2) \in \delta(p, a, s_1, s_2), \]

then if the automaton is in state \(p \), reads an \(a \) in the input word, the symbol \(s_1 \) is at the top of stack 1, and the symbol \(s_2 \) is at the top of stack 2, then it can go to state \(q \) while replacing \(s_1 \) with the word \(w_1 \) on the top of stack 1 and replacing \(s_2 \) with the word \(w_2 \) on the top of the second stack.

Argue that 2-stack automata are equivalent to Turing machines, i.e., that for every Turing machine \(M \) that accepts a language \(L(M) \), there is a 2-stack automaton that also accepts \(L(M) \).