Efficient Algorithms and Problem Complexity
– Dynamic Programming –

Frank Drewes
Department of Computing Science
Umeå University
Today’s Menu

1. What is Dynamic Programming?

2. Example: The Longest Common Subsequence

3. Example: Floyd’s Algorithm
Dynamic Programming

- Divide and Conquer solves a problem instance by dividing it into smaller instances and solving them.
- Conceptually, this is a top-down approach.
- Dynamic Programming (DP) is similar, but rather bottom-up.
- Solutions to small sub-instances are computed and then used in the computation of larger sub-instances.
- Major strength: avoid to compute things repeatedly.

...but the name is badly chosen...
The Dynamic Programming Pattern

Suppose our problem instances are from a set \mathcal{I}. Thus, with input $I \in \mathcal{I}$, your program P is supposed to produce a solution $P(I)$.

The DP idea, if $|I| = n$:

- Define auxiliary parameters i_1, \ldots, i_k to “cut out” smaller sub-instances $I_{i_1 \ldots i_k}$ from I.
- The smallest sub-instances $I_{i_1 \ldots i_k}$ should be easy to solve directly.
- Larger $I_{i_1 \ldots i_k}$ should be solvable by making use of the solutions of the smaller sub-instances.
- Strategy:
 - Solve the smallest sub-instances $I_{i_1 \ldots i_k}$ and save the results.
 - Using the saved results, solve larger and larger sub-instances until I itself is solved.
Iterative Dynamic Programming

Filling a table “from one corner”
(dimensions = number of auxiliary parameters)
Dynamic Programming by Memoization

Filling a table recursively “by need”. Memoization of results of earlier calls avoids exponential blow-up.
What is Dynamic Programming?

Straightforward Recursion vs. Dynamic Programming

Typical situation in which DP is worth considering:

- There is a recursive solution that breaks down instances into smaller ones (and combines their solutions to bigger ones).
- The recursive solution creates a combinatorial explosion of recursive calls.
 Example: \(f(a_1 \cdots a_n) \sim f(a_1 \cdots a_{n-1}) \oplus f(a_2 \cdots a_n) \) yields \(O(2^n) \) calls.
- Many recursive calls are redundant (as they are identical).
 Example: Above, there are only \(O(n^2) \) different calls.
- In such situations, simple recursion is a huge waste of time.
 DP computes each sub-solution only once.

Question: Why is divide and conquer not a huge waste of time, then?
The Optimal Substructure Property (Johnsonbaugh, Schaefer)

If S is an optimal solution to the problem, then the components of S are optimal solutions to subproblems.

In order for a DP algorithm to solve an optimization problem correctly, this property must hold.

Let’s discuss what this means...
The Longest Common Subsequence

Terminology: A subsequence of a string $a_1 \cdots a_m$ is a string $a_{i_1} \cdots a_{i_l}$ such that $1 \leq i_1 < \cdots < i_l \leq m$ (not necessarily a substring).

Problem: Longest Common Subsequence

Input: Strings $u = a_1 \cdots a_m$ and $v = b_1 \cdots b_n$.
Output: A subsequence of both u and v that is maximal in length.

Recursive solution:

$$lcs(u, v) = \begin{cases}
0 & \text{if } |u| = 0 \text{ or } |v| = 0 \\
\max\{lcs(u', v), lcs(u, v')\} & \text{if } u = u'a, v = v'b, a \neq b \\
lcs(u', v') + 1 & \text{if } u = u'a, v = v'a.
\end{cases}$$

⇒ Exponentially many recursive calls. 😞
The Longest Common Subsequence by DP, Step 1

Computing the length of $lcs(u', v')$ for all prefixes u', v' of u, v:

```
lcs_len(u, v) where (m, n) = (|u|, |v|)
    create new array len[0···m, 0···n] initialized to 0
    for i = 1 to m do
        for j = 1 to n do
            if u[i] = v[j] then
                len[i, j] = len[i − 1, j − 1] + 1
            else
                len[i, j] = max(len[i − 1, j], len[i, j − 1])
```

\Rightarrow this computes $lcs(u, v) = len(m, n)$ in $O(mn)$ steps.
The Longest Common Subsequence by DP, Step 2

Constructing \(lcs(u, v) = lcs_0(m, n) \) from \(len[0 \cdots m, 0 \cdots n] \):

\[
lcs_0(i, j) \text{ where } u, v \text{ are global variables}
\]

\[
\text{if } i = 0 \text{ OR } j = 0 \text{ then}
\]
\[
\text{return empty string}
\]

\[
\text{if } u[i] = v[j] \text{ then}
\]
\[
\text{return } lcs(i - 1, j - 1) \cdot u[i]
\]

\[
\text{else if } len[i, j - 1] = len[i, j] \text{ then}
\]
\[
\text{return } lcs_0(i, j - 1)
\]

\[
\text{else}
\]
\[
\text{return } lcs_0(i - 1, j)
\]

Question: Would it be better to avoid the detour via \(lcs_len \)?
Parallelization Opportunities

The red squares can be computed in parallel!
All-Pairs Shortest Paths

Problem: All-Pairs Shortest Paths

Input: The adjacency matrix of a weighted graph $G = (V, E, w)$.
Output: A matrix $dist$ such that $dist[u, v]$ is the length of the shortest path from u to v, for all $u, v \in V$.

DP idea (where $u, v \in V = \{1, \ldots, n\}$ and $k \in \{0, \ldots, n\}$): Let

$$Floyd(u, v, k) = \text{length of the shortest path in } path(u, v, k)$$
that does not pass any of $k + 1, \ldots, n$

Observation: For $k > 0$,

$$Floyd(u, v, k) = \min\{Floyd(u, v, k - 1),$$
$$Floyd(u, k, k - 1) + Floyd(k, v, k - 1)\}$$
Floyd's Algorithm

\[\text{Floyd}_0(G) \text{ where } G \text{ is given as a matrix, } G[u, v] = w(u, v) \in \mathbb{N}_\infty \]
\[\text{for } k = 1 \text{ to } n \text{ do} \]
\[\quad \text{for } u = 1 \text{ to } n \text{ do} \]
\[\quad \quad \text{for } v = 1 \text{ to } n \text{ do} \]
\[\quad \quad \quad G[u, v] = \min(G[u, v], G[u, k] + G[k, v]) \]

\[\text{Floyd}_1(G) \text{ where } \ldots \text{ and } \text{high}[u, v] \text{ is initialized to } 0 \]
\[\text{for } k = 1 \text{ to } n \text{ do} \]
\[\quad \text{for } u = 1 \text{ to } n \text{ do} \]
\[\quad \quad \text{for } v = 1 \text{ to } n \text{ do} \]
\[\quad \quad \quad \text{if } G[u, v] > G[u, k] + G[k, v] \text{ then} \]
\[\quad \quad \quad \quad G[u, v] = G[u, k] + G[k, v] \]
\[\quad \quad \quad \quad \text{high}[u, v] = k \]
Floyd’s Algorithm, Extracting the \((u,v)\)-Path

```
getPath(u, v) where Floyd has been run and \(G[u, v] < \infty\)

\[ k = high[u, v] \]

if \( k = 0 \) then
  return empty list
else
  return \( getPath(u, k) \cdot [k] \cdot getPath(k, v) \)  // list concatenation
```

Notes & questions

- The version in the textbook is slightly different.
- Why not store paths instead of \(high[u, v]\) right away?
- Why is \(G[u, v] < \infty\) required?
Warshall’s Algorithm

Computing the transitive closure of a graph (or Boolean matrix):

\[
\text{Warshall}(G) \text{ where } G \text{ is given as a matrix, } G[u, v] \in \{T, F\}
\]

\[
\text{for } k = 1 \text{ to } n \text{ do}
\]

\[
\text{for } u = 1 \text{ to } n \text{ do}
\]

\[
\text{for } v = 1 \text{ to } n \text{ do}
\]

\[
G[u, v] = G[u, v] \lor (G[u, k] \land G[k, v])
\]

Note the important points:

1. Initially, each \(G[u, v] \) contains the value for \(k = 0 \).
2. \(G[u, v] = G[u, v] \oplus (G[u, k] \odot G[k, v]) \) uses \(\odot \) to combine \(G[u, k] \) and \(G[k, v] \), and \(\oplus \) to combine \(G[u, k] \odot G[k, v] \) with the old \(G[u, v] \).
3. Floyd uses edge weights and the operations \text{min} \text{ and } +.
4. Warshall uses \text{T,F} \text{ and the operations } \lor \text{ and } \land.
Conversion FA to REGEXP (for those interested)

Have a look at (or recall) the algorithm that converts a finite automaton into an equivalent regular expression. It uses once more the same algorithm, but for a completely different problem (mainly by choosing other initial values and operations \oplus and \odot).
Please read Chapter 8 of the textbook.