Efficient Algorithms and Problem Complexity
– Nondeterminism and NP –

Frank Drewes
Department of Computing Science
Umeå University
Today’s Menu

1. Nondeterminism
2. Some Examples
3. An Equivalent View of NP
A nondeterministic RAM (nRAM) N is a RAM with one additional type of instruction:

$$\text{goto } k | l$$

where $k, l \in \{1, \ldots, m + 1\}$ for a program consisting of m instructions.

This instruction sets the program counter to k or l.

\Rightarrow for every input, N has a set of valid computations (i.e., not only one). This set forms a binary tree that branches whenever an instruction $\text{goto } k | l$ is reached.
nRAMs as decision algorithms

Definition: Acceptance and Deciding a Problem

An nRAM N accepts an input if there exists at least one computation that outputs 1; it rejects the input if all computations output 0.

N decides a decision problem A if it accepts all positive instances and rejects all other inputs.

Notes:

- The important part of the definition is the upper part (acceptance and rejection). Notice the asymmetry!
- The definition of “decides” is the usual one.
Nondeterministic (Polynomial) Time

Definition: Running Time of an nRAM
Let N be an nRAM. For a given input, the running time of N is the maximum of the lengths of all computations of N with this input.

As before, we are mainly interested in the worst-case running time with inputs of length n (taking the maximum over all inputs of length n).

Definition: NP
NP is the set of all decision problems that can be decided in polynomial time by an nRAM.
Remarks about Nondeterminism

- Nondeterminism will perhaps never admit a faithful physical realization.
- The reason is the unrealistic definition of acceptance and running time.
- Intuitively, it assumes that we “magically” find the computation that accepts the input (if it exists).

If it is unrealistic, why should we be interested in nondeterminism?

- It isolates an aspect of computation whose role we do not understand.
- Basically, this aspect is searching for a solution (or a witness).
- In many cases, nondeterministic algorithms become extremely simple.
- NP is just across the border of efficient solvability. Or maybe not?
- In other words, if there is a chance to expand the area of efficient solvability, it is probably here you can find it!
NP is in Between P and EXP

Theorem

\[P \subseteq NP \subseteq EXP, \] where EXP (also called EXPTIME) is the set of all decision problems that can be decided by a RAM in time \(O(2^{p(n)}) \) for some polynomial \(p \).

Proof sketch

\(P \subseteq NP \) because every RAM, by definition, is an nRAM.

For \(NP \subseteq EXP \), suppose \(A \) is decided by an nRAM \(N \) in time \(p(n) \). For an input of length \(n \), the tree of all computations of \(N \) has less than \(2^{2p(n)} \) nodes. Thus, a RAM that simulates \(N \) by working like \(N \), but eliminates the nondeterminism by backtracking, decides \(A \) in time \(O(2^{2p(n)}) \).
Example: Independent Set

Input: An undirected graph $G = (V, E)$ and a number $k \in \mathbb{N}$.

Question: Does G contain an independent set of size k, i.e., a set $V' \subseteq V$ with $|V'| = k$ and $(u, v) \notin E$ for all $u, v \in V'$?
Example: Independent Set

Deciding Independent Set nondeterministically:

Let \(G, k \) be the input, where \(G = (\{1, \ldots, n\}, E) \).

1. Use nondeterminism to generate \(k \) numbers \(v_1, \ldots, v_k \in \{1, \ldots, n\} \) (store them in \(k \) registers).

2. For all \(i = 1, \ldots, k \) and \(j = i + 1, \ldots, n \), return \(0 \) if
 - \(v_i = v_j \) or
 - \((v_i, v_j) \in E \).

3. Accept the input (i.e., return \(1 \)).

The overall running time is \(O(n^2) \).

\[\Rightarrow \text{Independent Set is in NP.} \]
Some Examples

Example: Satisfyability (SAT)

<table>
<thead>
<tr>
<th>Satisfyability (SAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A propositional logic formula φ in conjunctive normal form (CNF).</td>
</tr>
<tr>
<td>Question: Is φ satisfiable (i.e., is there an assignment of truth values to the boolean variables that makes φ true?)</td>
</tr>
</tbody>
</table>

Example: $(\neg x_1 \lor x_2 \lor x_4 \lor x_6) \land (x_1 \lor \neg x_2 \lor \neg x_6) \land (x_1 \lor x_2)$

Satisfiable or not?
Some Examples

Example: Satisfiability (SAT)

Deciding SAT nondeterministically:

Let $\varphi = C_1 \land \cdots \land C_k$ contain m variables x_1, \ldots, x_m.

1. Use nondeterminism to generate m bits $b_1, \ldots, b_m \in \{0, 1\}$ (store them in m registers).

2. For $i = 1, \ldots, k$, return 0 if C_i neither contains
 - a literal x_i such that $b_i = true$ nor
 - a literal $\neg x_i$ such that $b_i = false$.

3. Accept the input (i.e., return 1).

The overall running time is $O(n)$.

\Rightarrow SAT is in NP.
Example: Hamiltonian cycle (HAM)

Hamiltonian cycle (HAM)

Input: An undirected graph \(G = (V, E) \).

Question: Does \(G \) contain a simple cycle of length \(|V|\)?

\[\notin \text{HAM} \quad \in \text{HAM} \]
Some Examples

Example: Hamiltonian cycle (HAM)

Deciding HAM nondeterministically:
Let $G = (\{1, \ldots, n\}, E)$.

1. Start by setting $v = 1$.
2. Repeat $n - 1$ times:
 * If v is marked, return 0; otherwise, mark v.
 * Nondeterministically choose a node v' such that $(v, v') \in E$ and make v' the new v.
3. Return 1 if $v = 1$, and 0 otherwise.

Depending on the details, the overall running time is $O(n)$ or $O(n^2)$.

\[\Rightarrow\] HAM is in NP.
NP can be defined entirely without nondeterminism.

Terminology needed:

- A binary relation $R \subseteq \Sigma^* \times \{0, 1\}^*$ is polynomially bounded if there is a polynomial p such that $|v| \leq p(|u|)$ for all $(u, v) \in R$.

- For $R \subseteq \mathbb{N}^* \times \{0, 1\}^*$ the definition is the same, where $|u|$ denotes the sum of the number of bits of the numbers in u.

Theorem (characterization of NP by witnesses)

A decision problem A is in NP if and only if there is a polynomially bounded binary relation $R \in P$ such that $A = \{u \mid (u, v) \in R$ for some $v\}$.

If $(u, v) \in R$, then v “witnesses” that $u \in A$.

Frank Drewes (Umeå University)
If $A \in \text{NP}$ then R exists:

Let N be an nRAM that decides A in time $O(p(n))$.

- For a computation C, encode the m nondeterministic choices made (when executing instructions $\text{goto } k \mid l$) as a string $\text{enc}(C) \in \{0, 1\}^m$.
- Let $(u, v) \in R$ if and only if $v = \text{enc}(C)$ for a computation C that accepts u (i.e., returns 1).

R is polynomially bounded because $|v| \leq p(|u|)$ for $(u, v) \in R$.

$R \in \text{P}$ by the RAM M that, with input (u, v), uses v to simulate the computation C of N such that $v = \text{enc}(C)$.

$\Rightarrow M$ accepts (u, v) if and only if C accepts u.
NP by Polynomially Bounded Relations and Witnesses

If \(R \) exists then \(A \in \text{NP} \):

Let \(M \) be a RAM that decides \(R \) in polynomial time, and let \(|v| \leq p(|u|) \) for all \((u, v) \in R \). An nRAM \(N \) deciding \(A \) works as follows:

1. With input \(u \), generate nondeterministically any \(v \in \{0, 1\}^* \) with \(|v| \leq p(|u|) \).
2. Continue deterministically like \(M \) to decide whether \((u, v) \in R \).

\(N \) runs in polynomial time, since phase 1 takes \(O(|v|) = O(p(|u|)) \) steps and phase 2 is the computation of \(M \) (Composition Theorem!).

\(N \) decides \(A \), because

\[
 u \in A \iff \exists v. (u, v) \in R \iff N \text{ has an accepting computation.}
\]
Please read Section 10.2 in the textbook, which has a number of examples of well-known problems in NP.