Efficient Algorithms and Problem Complexity

– Dealing with NP-Completeness: Fixed-Parameter Tractability –

Frank Drewes
Department of Computing Science
Umeå University
Today’s Menu

1. The General Idea of Fixed-Parameter Tractability
2. Formalization of Fixed-Parameter Tractability
3. A Non-Trivial Example
Parameters

Instances of NP-complete problems often contain a parameter $k \in \mathbb{N}$.

- **CLIQUE** = Does the graph G contain a clique of size k?
- **TSP$_D$** = Does the distance matrix M allow for a tour of length $\leq k$?
- **BIN PACKING** = Can items of size s_1, \ldots, s_n be stored in k bins?
- **LCS** = Do strings u_1, \ldots, u_n contain a common subsequence of length k?

Even if the parameters are not obviously part of the problem definition, we may consider others:

- For **HAM**, we may consider the maximum degree of nodes.
- For **SAT**, we may count the number of distinct variables.
- For **INTEGER PROGRAMMING**, we may use the largest coefficient of the inequalities.
Why are We Interested in Parameters?

The Motivating Question

We may have an application in which the instances are large, but a certain parameter \(k \) is small. May this be an advantage?

Our hope: An algorithm for a problem \(A \in \text{NP} \), instead of simply running in time \(2^{p(n)} \) for some polynomial \(p \), may run in time

\[
f(k) \cdot p(n)
\]

for a (computable) function \(f \).

Then \(A \) is essentially solvable in polynomial time, except that the constant factor depends on the parameter.
Formalization of Fixed-Parameter Tractability

Formalization

Definition (parameterized problem)

A parameterized problem is a pair \((A, \kappa)\) consisting of

- a decision problem \(A\) and
- a polynomial-time computatable function \(\kappa\) that maps every instance \(x\) of \(A\) to a number \(\kappa(x) \in \mathbb{N}\), the parameter.

Example: If \(A = \text{CLIQUE}\), let \(\kappa(G, k) = k\).

Side remark: The field is quite young – it started at the very end of the previous century, by the work of Downey and Fellows.
Formalization

Definition (fixed-parameter tractable)

A parameterized problem \((A, \kappa)\) is fixed-parameter tractable if there are a computable function \(f\) and a RAM \(M\) such that \(M\) decides \(A\) in time \(f(\kappa(x)) \cdot p(\|x\|)\).

\(\text{FPT}\) denotes the class of all fixed-parameter tractable problems.

Notes:

- \(P \subseteq \text{FPT}\) (if we identify a decision problem \(A\) with \((A, \kappa)\) where \(\kappa(x) = 0\)).
- Every slice \((A, \kappa)_l = \{x \in A | \kappa(x) = l\}\) of a problem in \(\text{FPT}\) is in \(P\).
- The choice of the parameter is essential. If \(\kappa(x) = \|x\|\) then \((A, \kappa) \in \text{FPT}\) for every decidable problem \(A\). [WHY? How to choose \(f\)?]
Example: Parameterized SAT

Parameterized SAT \((\kappa(\varphi) = \text{number of distinct variables in } \varphi)\) is in FPT: For a formula \(\varphi\) with \(k\) variables, test all \(2^k\) truth assignments \(\Rightarrow\) running time \(O(2^k \cdot |\varphi|)\).

Thus, we can cope with \(\text{SAT}\) if we know that the number of variables is small (even if \(\varphi\) itself is large).

Trying the same with \(\text{CLIQUE}\), with the clique size \(k\) as the parameter: For an input graph \(G = (V, E)\) with \(|V| = n\), checking all subsets of \(V\) of size \(k\) means to check \(n^k\) possibilities. 😞

Can we do better? Perhaps not, because \(\text{CLIQUE}\) is \(W[1]\)-complete.
Let’s start with a possible application scenario:

Goal: choose an editorial board of \(k \) editors for a new scientific journal.

Available data: bibliography database of the most important books in the area covered by the journal.

Assumption: Choosing at least one author of each book guarantees good coverage of the area.

Question: Can we select \(k \) authors so that we “hit” the author list of each book at least once?

This is **HITTING SET**, another important NP-complete problem.
A Non-Trivial Example

HITTING SET

Input: Sets X_1, \ldots, X_m and a number $k \in \mathbb{N}$.
Question: Is there a set X of size k such that $X_i \cap X \neq \emptyset$ for all i?

Let us denote the parameterized version, with the obvious parameter k, by k-HITTING SET. Is k-HITTING SET fixed-parameter tractable?

Unfortunately, k-HITTING SET is W[2]-complete
⇒ maybe it is time to give up?
Don’t Give up so Quickly!

In our editorial board example, \(k \) is the (small) number of editors wanted.

Is there another (small) parameter?

YES! – Books to tend to have very few authors, so let’s look at . . .

k-s-HITTING SET

Input: Nonempty sets \(X_1, \ldots, X_m \) and a number \(k \in \mathbb{N} \).

Parameter: \(k + s \), where \(s = \max_{1 \leq i \leq m} |X_i| \).

Question: Is there a set \(X \) of size \(k \) such that \(X_i \cap X \neq \emptyset \) for all \(i \) ?

Basic observations underlying the algorithm on the next slide:

- We must hit each \(X_i \) anyway, so we can process them in any order.
- For every \(X_i \), we have to try at most \(s \) choices.
A Non-Trivial Example

k-s-HITTING SET is in FPT

```
\text{hit}(X_1 \cdots X_m, k)
\quad \text{if } k = 0 \text{ or } m = 0 \text{ then return } m = 0
\quad \text{for } x \in X_1 \text{ do}
\quad \quad X' \leftarrow \text{empty list}
\quad \quad \text{for } j = 2, \ldots, m \text{ do}
\quad \quad \quad \text{if } x \notin X_j \text{ then append } X_j \text{ to } X'
\quad \quad \text{if } \text{hit}(X', k - 1) \text{ then return true}
\quad \text{return false}
```

Recurrence relation $T(n, k, s)$ for running time:

- $T(n, 0, s) \leq c$
- $T(n, k, s) \leq s \cdot T(n, k - 1, s) + csn$ \quad (for $k > 0$ and a suitable constant c).
k-s-HITTING SET is in FPT

\[
\begin{align*}
T(n,0,s) & \leq c \\
T(n,k,s) & \leq s \cdot T(n,k-1,s) + csn
\end{align*}
\]

Proving by induction on \(k\) that

\[
T(n,k,s) \leq (2s^k - 1) \cdot csn
\]

for all \(n \geq 1\) and \(s \geq 2\):

- **Induction basis**: by the choice of \(c\).
- **Inductive step**:
 \[
 \begin{align*}
 T(n,k,s) & \leq s \cdot T(n,k-1,s) + csn \\
 & \leq s \cdot (2s^{k-1} - 1) \cdot csn + csn \\
 & = (2s^k - s) \cdot csn + csn \\
 & = (2s^k - s + 1) \cdot csn \\
 & = (2s^k - 1) \cdot csn \quad \text{(because } s \geq 2)\n \end{align*}
 \]
The Method of Bounded Search Trees

\[\text{hit}(\cdots) \]
\[\cdots \]
\[\text{for } x \in X_1 \text{ do } \begin{array}{l}
\text{branching factor at most } s \\
\text{\cdots} \\
\text{if } \text{hit}(X', k-1) \text{ then } \cdots \text{ descending at most } k \text{ times} \\
\text{\cdots}
\end{array} \]

- The search tree is of size \(O(s^k) \).
- The computation at each individual node takes polynomial time.
- In total, this gives the bound from the preceding slide.

Note that the size of the search tree is not important for fixed-parameter tractability – only that it does not depend on \(n \).
You can find a bit more about FPT in Section 11.4 of *Algorithms* (the official course textbook) and much more in books by Downey and Fellows, Flum and Grohe, and Niedermeier.