Efficient Algorithms and Problem Complexity
– Greedy Algorithms –

Frank Drewes
Department of Computing Science
Umeå University
Outline

Today’s Menu

1. The Greedy Approach

2. Recalling Minimal Spanning Trees

3. Example: Kruskal’s Minimal Spanning Tree Algorithm

4. Example: Prim’s Minimal Spanning Tree Algorithm
The greedy approach

When does the greedy approach apply?

- Greedy algorithms usually seek to solve optimization problems.
- An optimization problem asks for a solution that satisfies some minimality or maximality requirement.
- Often, the desired result is a substructure of the input (e.g. a subgraph).

The greedy pattern...

- Start with a partial solution that is trivial (empty set, single node, etc).
- Extend the partial solution stepwise by picking the best of the remaining items.
- Stop when nothing can be added anymore.
The greedy approach

- **How do we know that it works?**
 - In general, we don’t!
 - We are not automatically guaranteed to find the optimum.
 - Some greedy algorithms are merely good heuristics.
 - Greedy algorithms are usually very efficient (about n iterations, no backtracking) and easy to implement.

- **What is the “best item” that should be picked?**
 - The choice of the “best item” determines the algorithm.
 - We talk about a greedy rule when referring to this choice.
 - It must
 - make progress towards a final solution,
 - preserve the property of being a partial solution, and
 - be efficiently computable.
Minimal Spanning Trees

Minimal spanning tree

A spanning tree of a (connected undirected) weighted graph $G = (V, E, w)$ is a subgraph $T = (V', E')$ of G such that

- $V' = V$ and
- T is a tree.

A minimal spanning tree (MST) of G is a spanning tree of G whose weight $w(T) = \sum_{e \in E'} w(e)$ is minimal.

The MST problem

- **Input:** A connected weighted graph G.
- **Output:** An MST of G.
Growing Partial Spanning Trees

MST Construction Theorem

Consider
- a subgraph \(G' = (V, E') \) of an MST of \(G = (V, E, w) \),
- a connected component \(C \) of \(G' \), and
- the set \(S \subseteq E \) of edges connecting nodes in \(C \) with nodes not in \(C \).

If \(e \) is an edge of minimal weight in \(S \), then \((V, E' \cup \{e\}) \) is also a subgraph of an MST of \(G \).
Proof of the MST Construction Theorem

Let $e = (u, v)$, where u belongs to C, and let $T = (V, E'')$ be an MST of G that contains G'.

Case 1: $e \in T$

$\Rightarrow (V, E' \cup \{e\})$ is contained in T as well. – Done.

Case 2: $e \notin T$

$\Rightarrow (V, E'' \cup \{e\})$ contains a cycle $u_1u_2\cdots u_n$ with $(u_1, u_2) = e$.

Let $e' = (u', v')$ to be the first edge on this cycle such that $v' \in C$.

$\Rightarrow (V, E'' \setminus \{e'\} \cup \{e\})$ is an MST containing $(V, E' \cup \{e\})$. [WHY?]
Kruskal’s algorithm, rough description

The input is given as a list of edges (and associated weights).

1. Start by defining $E' = \emptyset$.
2. **Greedy rule:** While $|E'| < |V| - 1$, choose $e = (u, v) \in E$ such that
 - u, v do not belong to the same connected component of (V, E') and
 - $w(u, v)$ is minimal among all edges with this property.
3. Add e to E' and repeat.
4. Return (V, E').
Correctness of Kruskal’s algorithm

Why does it work?

1. Initially $G' = (V, E')$ is a subgraph of an MST of G.
2. By the MST Construction Theorem, this property is preserved
 \Rightarrow by induction, $G' = (V, E')$ is always contained in an MST of G.
3. Finally $|E'| = n - 1$, meaning that G'' is equal to the MST it is contained in
 $\Rightarrow G''$ itself is the MST.
Kruskal’s algorithm, filling in some details (1)

To implement Kruskal’s algorithm, we use disjoint sets to represent the connected components.

Operations on the disjoint sets data structure:

- $\text{makeset}(v)$ puts v into a set on its own (initialization),
- $\text{findset}(v)$ returns a unique representative of the set that v belongs to,
- $\text{union}(u, v)$ joins the sets that u and v belong to.

The running time of makeset is constant; the running time of findset and union is $O(\log n)$.
Kruskal’s algorithm, filling in some details (2)

\[
\text{Kruskal}(E, n)
\]

\[
\text{sort}(E) \quad \text{// sort according to edge weights}
\]

\[
\text{for } v = 1 \text{ to } n \text{ do}
\]

\[
\text{makeset}(v) \quad \text{// node } v \text{ is a singleton component}
\]

\[
E' = \emptyset
\]

\[
i = 1
\]

\[
\text{while } |E'| < n - 1 \text{ do}
\]

\[
(u, v) \leftarrow E[i++]
\]

\[
\text{if } \text{findset}(u) \neq \text{findset}(v) \text{ then}
\]

\[
E' \leftarrow E' \cup \{(u, v)\}
\]

\[
\text{union}(u, v) \quad \text{// join the components}
\]

\[
\text{return } E'
\]
Running time of Kruskal’s algorithm (3)

1. At most \(\max(n, m) = O(m) \) calls of \(\text{makeset} \), \(\text{findset} \), and \(\text{union} \).
2. Each takes \(O(\log n) \) steps \(\Rightarrow O(m \log n) \subseteq O(m \log m) \) in total.
3. Even \(\text{sort}(E) \) runs in time \(O(m \log m) \).
For Prim’s algorithm, G is represented by adjacency lists.

1. Select any starting node v, and put $G' = (V', E') = (\{v\}, \emptyset)$.
2. Greedy rule: While $|V'| < |V|$, choose $e = (u, v) \in E$ such that
 - $u \in V'$ and $v \in V \setminus V'$ and
 - $w(u, v)$ is minimal among all edges with this property.
3. Add v to V' and e to E' and repeat.
4. Return (V', E').

Correctness is similar to the case of Kruskal’s algorithm.
Implementing Prim’s algorithm efficiently

Efficient implementation of Prim’s algorithm is slightly more complex.

- Represent the output by an array $parent[1, \ldots, n]$.
- Maintain a minheap h to organize the nodes in $V \setminus V'$.
- The key of each node v is $\min\{w(u, v) \mid v \in V'\}$.
- Iteration:
 1. Retrieve and remove the node v with the minimal key from h.
 2. Iterate over $adj[v]$ to update the keys of all adjacent $v' \notin V'$ such that $w(v, v') < v'.key$.
 3. For each such v', set $parent[v'] = v$.

\Rightarrow each entry in the adjacency lists is considered at most once, and the time spent at each for heap operations is $O(\log n)$.

\Rightarrow the total running time is $O(m \log n)$.
A slightly more formal description

\[\text{Prim}(adj) \] where \(V = \{1, \ldots, n\} \) and \(v_0 = 1 \), using a minheap \(h \)

- initialize \(h \) with \(1.\text{key} = 0, u.\text{key} = \infty \) for \(u \in V \setminus \{1\} \)
- \(u.\text{pending} \leftarrow \text{true} \) for all \(u \in V \)
- \(\text{parent}[1] \leftarrow \bot \) // node 1 will be the root

while \(h \) not empty **do**

- \(u \leftarrow h.\text{del}() \) // get and delete node \(u \) with smallest key
- \(u.\text{pending} \leftarrow \text{false} \)

for \((v, \text{weight}) \) in \(\text{adj}[u] \) **do**

 - if \(v.\text{pending} \&\& \text{weight} < v.\text{key} \) **then**
 - \(v.\text{key} \leftarrow \text{weight} \)
 - \(\text{parent}(v) \leftarrow u \)
 - \(h.\text{restoreHeap}(v) \)

return \(\text{parent} \)
Running time of Prim’s algorithm

Running Time of Prim’s Algorithm

Prim’s Algorithm runs in time $O(m \log n)$.

(Again, m is the number of edges in the input graph and n is the number of nodes.)

Compare with Kruskal’s algorithm – is there a difference?
Please read the sections on minimal spanning trees in the textbook (and recall heaps if necessary).