Efficient Algorithms and Problem Complexity

– Reductions, NP-completeness, and the Cook-Levin Theorem –

Frank Drewes
Department of Computing Science
Umeå University
Today’s Menu

1. Reductions

2. NP-Completeness

3. The Cook-Levin Theorem
What are We Aiming at?

- We suspect some problems in NP to be significantly harder than each of the problems in P.
- How should we define significance (or insignificance) in this context?
- The definition should consider
 1. the difference between problems in P to be insignificant, but
 2. the difference between problems in and outside P to be significant.
- The Composition Theorem gives us a strong hint: We can apply any polynomial-time preprocessing to a problem in P without leaving P!
- The preprocessing may in particular translate one problem into another.
- Such translations are called polynomial-time reductions.
Polyomial-Time Reductions

Definition (polynomial-time reduction)
Let A and B be decision problems. A polynomial-time reduction from A to B is a function f such that

1. for every input x, $x \in A \iff f(x) \in B$, and
2. f can be computed in (deterministic!) polynomial time.

We say that A is polynomial-time reducible to B, and write $A \leq_p B$.

Note: \leq_p is a preorder (also called a quasi-order), that is,

- it is transitive ($A \leq_p B \leq_p C$ implies $A \leq_p C$) [WHY?]
- it is reflexive ($A \leq_p A$) [WHY?].
So, What Does this Intuitively Mean?

Importantly, \leq_p is not acyclic:

For $A \neq B$ we may have both $A \leq_p B$ and $B \leq_p A$. We write this as $A \equiv_p B$ and say that A and B are polynomial-time equivalent.

- $A \leq_p B$ formalizes that A is not significantly harder than B – the difference is only a polynomial preprocessing.
- In particular, $A \equiv_p B$ means that the difference is only polynomial in either direction – they are of the same complexity if we disregard polynomial preprocessing.
- On the other hand, if $A \leq_p B$ but $B \not\leq_p A$, then B is indeed significantly harder than A, i.e., the difference is more than “just” a polynomial.
Insignificance of the Difference Between Problems in P

Now, is “the difference between problems in P insignificant”?

We want that a polynomial-time reduction from A to B exists if $A, B \in P$.

Here is such a reduction f: Choose any $y^+ \in B$ and $y^- \notin B$, and define

$$f(x) = \begin{cases} y^+ & \text{if } x \in A \\ y^- & \text{otherwise.} \end{cases}$$

- **Checking requirement 1**: by the definition of f, $x \in A \iff f(x) \in B$.
- **Checking requirement 2**: computing f in polynomial time works by deciding whether $x \in A$ and outputting either y^+ or y^-.
- Intuitively, the reduction does all the work itself.
- It can do so, because it has all the resources A requires.
- There are exactly two problems B for which this does not work. Which ones?
Significance of the Difference Between Problems In and Outside P

Theorem (P is (backwards) closed under reductions)

If \(A \leq_p B \) and \(B \in P \) then \(A \in P \).
In other words, if \(B \in P \) but \(A \not\in P \) then \(A \not\leq_p B \).

Proof: Let \(M \) decide \(B \) and let \(M_0 \) compute a reduction \(f \) from \(A \) to \(B \), both in polynomial time.

- \(M' = M \circ M_0 \) runs in polynomial time (Composition Theorem).
- We have \(M'(x) = M(M_0(x)) = M(f(x)) \). Therefore,
 \[
 x \in A \iff f(x) \in B \iff M(f(x)) = 1 \iff M'(x) = 1.
 \]
- Thus, \(M' \) decides \(A \) in polynomial time.
NP-Completeness

We ultimately want to understand whether there are problems in NP that are not in P. So, it makes sense to look at the hardest problems in NP.

Definition (NP-complete)

A decision problem B is NP-complete if

- $B ∈ \text{NP}$ and
- $A \leq_p B$ for every problem $A ∈ \text{NP}$.

- If the first condition is dropped, we say that B is NP-hard.
- For classes above NP (such as EXP), completeness is defined similarly.
- For P and classes inside P, we would need another type of reduction (because of the reasoning on Slide 6).
To prove $P = NP$, it suffices to solve one NP-complete problem efficiently.

Theorem

If there is an NP-complete problem B such that $B \in P$, then $P = NP$.

Proof: Since B is NP-complete, we have $A \leq_p B$ for all $A \in NP$. By the closedness of P under reductions (Slide 7), this means that $A \in P$.
Proving NP-Completeness

Lemma

If $A \in \text{NP}$ and $B \leq_p A$ for an NP-complete problem B, then A is NP-complete.

Proof: This is because, for every $C \in \text{NP}$, we have $C \leq_p B \leq_p A$.

This yields the most common way to prove that A is NP-complete:

1. show that $A \in \text{NP}$,
2. choose a suitable NP-complete problem B, so that you manage to find a reduction f from B to A (note the direction!!),
3. argue that f is polynomial-time computable,
4. show that $f(x) \in A$ iff $x \in B$ (both directions!!!).
The Cook-Levin Theorem

For the method on the previous slide to be useful, someone has to find a first NP-complete problem...

Theorem (Cook 1971, Levin 1973)

SAT is NP-complete.

The proof...

- shows how to construct a polynomial-time reduction from A to SAT, for arbitrary $A \in \text{NP}$,
- cannot be based on anything else than the existence of a nondeterministic polynomial-time decision algorithm for A.

Rather than nRAMs, we use Turing machines (TMs) for the proof sketch, because they are simpler.
The Cook-Levin Theorem

Proof Sketch of the Cook-Levin Theorem

We use the characterization of NP by polynomially bounded binary relations. Let M be a deterministic TM and p, q polynomials such that

- M accepts only strings of the form $x \# y$, where $y \in \{0, 1\}^{p(n)}$ ($n = |x|$),
- $x \in A$ if and only if $\exists y \in \{0, 1\}^{p(n)}$ with $M(x \# y) = yes$, and
- M runs in at most $q(n)$ steps.
- When M halts (after $q(n)$ steps), its head scans the first tape cell.
- M accepts the input by writing a special symbol α in the first tape cell and entering a special accepting state z_{yes}.

Major proof step: From $x \# y$ we construct, in polynomial time, a Boolean formula (in CNF) that encodes the entire computation of M with this input.
A computation of M as a $q(n) \times q(n)$-array of symbols:

$$q(n)$$

<table>
<thead>
<tr>
<th>a^{z_0}</th>
<th>b</th>
<th>b</th>
<th>\cdots</th>
<th>$#$</th>
<th>0</th>
<th>1</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>b^{z_1}</td>
<td>b</td>
<td>\cdots</td>
<td>$#$</td>
<td>0</td>
<td>1</td>
<td>\cdots</td>
</tr>
<tr>
<td>\cdots</td>
<td>b</td>
<td>a^{z_k}</td>
<td>c</td>
<td>\cdots</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\cdots</td>
<td>b</td>
<td>b</td>
<td>c^{z_l}</td>
<td>\cdots</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\alpha^{z_{yes}}$ \cdots

- Encode contents of cell c_{ij} by a vector \vec{c}_{ij} of boolean variables.
- Row 1 should contain the initial configuration
 \Rightarrow use formulas $\varphi_{\sigma}(j) \equiv " \vec{c}_{1j} \text{ represents } \sigma \"$.
- c_{i+1j} is determined by $c_{ij-1}, c_{ij}, c_{ij+1}$
 \Rightarrow use $\varphi(i, j) \equiv " \vec{c}_{i+1j} \text{ represents the successor of } \vec{c}_{ij-1}, \vec{c}_{ij}, \vec{c}_{ij+1} \"$.
- $c_{q(n)1}$ should indicate acceptance
 \Rightarrow use $\varphi_{yes} \equiv " \vec{c}_{q(n)1} \text{ represents } \alpha^{z_{yes}} \".$
The Cook-Levin Theorem

Proof Sketch of the Cook-Levin Theorem

Computing the reduction for input $x \# y$ of length n:

1. Compute $q(n)$ and the initial configuration $b_1 \cdots b_{q(n)}$.
2. Print “$\varphi_{b_1}(1), \ldots, \varphi_{b_{q(n)}}(q(n))$”.
3. For $i = 1, \ldots, q(n) - 1$ and $j = 1, \ldots, q(n)$ print “$\land \varphi(i, j)$”.
4. Print “$\land \varphi_{yes}$”.

\Rightarrow the resulting formula φ is satisfiable if and only if M accepts $x \# y$.

But we have only x and want φ to be satisfiable if there exists such a y!

Easy solution: In Step 2 above, print $\varphi_{b_j}(j)$ only for the initial part $x \#$. For the bits in y, print $\varphi_0(j) \lor \varphi_1(j)$ (turned into CNF).
Please read the corresponding part of the lecture notes. The proof sketch of the Cook-Levin Theorem differs from the one above in some details to make it more exact but is essentially the same.