Efficient Algorithms and Problem Complexity
– Searching in Text –

Frank Drewes
Department of Computing Science
Umeå University
Today's Menu

1. Knuth-Morris-Pratt Substring Search

2. Regular Expression Matching
Searching for a String in a Text

The problem

Input: A text \(t = t_0 \ldots t_n \) and a pattern \(p = p_0 \ldots p_m \), both in \(\Sigma^* \).
Output: The least \(i \) such that \(t_i \ldots t_{i+m} = p \) (and \(-1\) if not such \(i \) exists).

- Naive algorithm: Check for \(i = 0, \ldots, n - m \) whether \(t_i \ldots t_{i+m} = p \).
- Running time: \(O(mn) \) (⇒ quadratic if the pattern is large).
- Nowadays, texts and patterns are very large in some applications. ⇒ \(O(m + n) \) would be desirable.
The Observation by Knuth, Morris, and Pratt

Suppose the initial part of $p = \text{statistics}$ matches $t_{i...i+6}$, but $t_{i+7} \neq i$.

- The naive algorithm increases i by 1 and tries to match p again.
- But we could immediately shift i by 5 positions!
- If the failure occurs after statistics, we can shift by 5 positions.

\[
\begin{array}{ccccccc}
 t = & \cdots & i & \cdots & i+s & \cdots & i+k & \cdots \\
 p = & 0 & \cdots & s & \cdots & k & \cdots \\
end{array}
\]

\Rightarrow if p matched up to index $k \geq -1$ we can safely shift p by

\[
\text{shift}[k] = \min\{s \geq 1 \mid p_{s...k} = p_{0...k-s}\}.
\]
The Knuth-Morris-Pratt Algorithm

\[\text{KMP-Search}(p, t) \text{ where } p = p[0, \ldots, m] \text{ and } t = t[0, \ldots, n] \]

Compute shift table \(\text{shift}[-1, \ldots, m] \)

\[i \leftarrow k \leftarrow 0 \]

\[\text{while } i \leq n - m \text{ do} \]

\[\text{if } t[i + k] = p[k] \text{ then} \]

\[k \leftarrow k + 1 \]

\[\text{else} \]

\[i \leftarrow i + \text{shift}[k - 1] \]

\[k \leftarrow \max(k - \text{shift}[k - 1], 0) \]

\[\text{return } -1 \]

How efficient is this? \(\Rightarrow \) at most \(2n \) loop iterations

And how do we compute the shift table?
Running Time of *KMP-Search*

As we shall see, the shift table can be computed in time $O(m)$.

This yields:

Theorem

KMP-Search returns the position of the first occurrence of p in t (and -1 if no such position exists) in time $O(m+n)$.

Note that this is a **uniform** algorithm: not only the text, but even the pattern is part of the input.
Computing the Shift Table

How to compute the shift table?

We have to match (prefixes of) \(p \) against \(p \)

\[\Rightarrow \text{run } KMP-Search(p, p) \text{ and record the matches in the shift table!} \]
Computing the Shift Table

\[\text{KMP-Shift}(p) \text{ where } p = p[0, \ldots, m] \]

1. \[\text{shift}[-1] \leftarrow \text{shift}[0] \leftarrow 1 \]
2. \[i \leftarrow 1 \]
3. \[k \leftarrow 0 \]
4. \[\textbf{while } i + k \leq m \textbf{ do} \]
5. \[\text{if } p[i+k] = p[k] \text{ then} \leftarrow \text{found } p[0 \cdots k] = p[i \cdots i+k] \]
6. \[\text{shift}[i+k] \leftarrow i \]
7. \[k \leftarrow k + 1 \]
8. \[\text{else} \]
9. \[\text{if } k = 0 \text{ then} \leftarrow \text{no match here at all} \]
10. \[\text{shift}[i] \leftarrow i + 1 \]
11. \[i \leftarrow i + \text{shift}[k-1] \leftarrow \text{is this OK???} \]
12. \[k \leftarrow \text{max}(k - \text{shift}[k-1], 0) \]
Regular expressions over an alphabet \(\Sigma \) consist of

- the symbols in \(\Sigma \) (we omit \(\emptyset \) and \(\epsilon \)),
- the unary operation \(^*\) ("Kleene star"), and
- the binary operations \(|\) and \(\cdot\).

A regular expression \(E \) denotes a language \(L(E) \subseteq \Sigma^* \) defined as follows:

<table>
<thead>
<tr>
<th>Expression (E)</th>
<th>Semantics (L(E))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>({a})</td>
</tr>
<tr>
<td>(E^*)</td>
<td>({u_1 \cdots u_n \mid n \geq 0, \ u_1, \ldots, u_n \in L(E)})</td>
</tr>
<tr>
<td>(E \mid E')</td>
<td>(L(E) \cup L(E'))</td>
</tr>
<tr>
<td>(E \cdot E')</td>
<td>({uu' \mid u \in L(E), u' \in L(E')})</td>
</tr>
</tbody>
</table>
Regular Expression Matching by Repeated Tree Traversal

Example: \(E = a \cdot (((a \cdot b) \mid d^*) \cdot c) \) as a tree

- Matching \(E \) to a text \(t \) means to check whether \(t = uvw \) with \(v \in L(E) \).
- We do this by reading \(t \) from left to right.
- Preprocessing: which subtrees match \(\epsilon \)?
 - single symbols never do
 - \(E^* \) always does
 - \(E_1 \mid E_2 \) does if \(E_1 \) does or \(E_2 \) does
 - \(E_1 \cdot E_2 \) does if both \(E_1 \) and \(E_2 \) do
 \(\Rightarrow \) obvious recursive algorithm.
Example: \(E = a \cdot ((a \cdot b) \mid d^*) \cdot c \) as a tree

- Now we match \(t[1], t[2], \ldots \), one at a time.
- After iteration \(i \), the nodes we can end up in by reading \(t[1 \cdots i] \) will be marked.
- \(t[i + 1] \) can be the first symbol of a new match or the continuation of an old one.
- Procedure for matching the next symbol: \(\text{next}(E, a, \text{boolean}) \).
- May this \(a \) start a new match?

Example: \(\text{adaabcc} \)
Regular Expression Matching by Repeated Tree Traversal

Example: $E = a \cdot ((a \cdot b) \mid d^*) \cdot c)$ as a tree

- Now we match $t[1], t[2], \ldots$, one at a time.
- After iteration i, the nodes we can end up in by reading $t[1 \cdots i]$ will be marked.
- $t[i + 1]$ can be the first symbol of a new match or the continuation of an old one.
- Procedure for matching the next symbol:
 $$\text{next}(E, a, \text{boolean}).$$
 May this a start a new match?

Example: $adaabcc$
Regular Expression Matching by Repeated Tree Traversal

Example: $E = a \cdot (((a \cdot b) \mid d^*) \cdot c)$ as a tree

- Now we match $t[1], t[2], \ldots$, one at a time.
- After iteration i, the nodes we can end up in by reading $t[1 \cdots i]$ will be marked.
- $t[i + 1]$ can be the first symbol of a new match or the continuation of an old one.
- Procedure for matching the next symbol: $\text{next}(E, a, \text{boolean})$.

May this a start a new match?

Example: $adaabcc$
Regular Expression Matching by Repeated Tree Traversal

Example: \(E = a \cdot (((a \cdot b) \mid d^*) \cdot c) \) as a tree

- Now we match \(t[1], t[2], \ldots \), one at a time.
- After iteration \(i \), the nodes we can end up in by reading \(t[1 \cdots i] \) will be marked.
- \(t[i + 1] \) can be the first symbol of a new match or the continuation of an old one.
- Procedure for matching the next symbol: \(\text{next}(E, a, \text{boolean}) \).

Example: \(adaabcc \)
Regular Expression Matching by Repeated Tree Traversal

Example: $E = a \cdot (((a \cdot b) \mid d^*) \cdot c)$ as a tree

- Now we match $t[1], t[2], \ldots$, one at a time.
- After iteration i, the nodes we can end up in by reading $t[1 \cdots i]$ will be marked.
- $t[i + 1]$ can be the first symbol of a new match or the continuation of an old one.
- Procedure for matching the next symbol: $\text{next}(E, a, \text{boolean})$.
 May this a start a new match?

Example: $adaabcc$
Regular Expression Matching by Repeated Tree Traversal

Example: \(E = a \cdot ((a \cdot b) \mid d^*) \cdot c \) as a tree

Now we match \(t[1], t[2], \ldots \), one at a time.

After iteration \(i \), the nodes we can end up in by reading \(t[1 \cdots i] \) will be marked.

\(t[i + 1] \) can be the first symbol of a new match or the continuation of an old one.

Procedure for matching the next symbol:
\[
\text{next}(E, a, \text{boolean}).
\]

May this \(a \) start a new match?

Example: \(adaabcc \)
Regular Expression Matching by Repeated Tree Traversal

Example: $E = a \cdot (((a \cdot b) | d^*) \cdot c)$ as a tree

- Now we match $t[1], t[2], \ldots$, one at a time.
- After iteration i, the nodes we can end up in by reading $t[1 \cdots i]$ will be marked.
- $t[i + 1]$ can be the first symbol of a new match or the continuation of an old one.
- Procedure for matching the next symbol: $\text{next}(E, a, \text{boolean})$.

May this a start a new match?

Example: $adaabcc$
boolean next\((E, a, \text{restartOK}) \) where \(E_1, E_2 \) are the children of \(E \) (if present)

\[
\begin{align*}
\text{if } & \ E.\text{type} \in \Sigma \text{ then} \\
& \ E.\text{mark} \leftarrow E.\text{type} = a \land \text{restartOK} \\
\text{else if } & \ E.\text{type} = | \text{ then} \\
& \ E.\text{mark} \leftarrow \text{next}(E_1, a, \text{restartOK}) \lor \text{next}(E_2, a, \text{restartOK}) \\
\text{else if } & \ E.\text{type} = * \text{ then} \\
& \ E.\text{mark} \leftarrow \text{next}(E_1, a, \text{restartOK} \lor E.\text{mark}) \\
\text{else if } & \ E.\text{type} = \cdot \text{ then} \\
& \ \text{boolean } b = E_1.\text{mark} \lor (E_1.\text{epsilon} \land \text{restartOK}) \\
& \ \text{next}(E_1, a, \text{restartOK}) \\
& \ E.\text{mark} \leftarrow \text{next}(E_2, a, b) \lor (E_1.\text{mark} \land E_2.\text{epsilon}) \\
\text{return } & \ E.\text{mark}
\end{align*}
\]

\textbf{Note:} Strict evaluation of \(\lor \) in case \(E.\text{type} = | \) is important!
Regular Expression Matching by Repeated Tree Traversal

The matching procedure:

```plaintext
match(E, t) where t = T[1, ..., n]

mark_\text{\textbackslash{epsilon}}(E)
if E.\text{\textbackslash{epsilon}} then return true
for i = 1, ..., n do
    if next(E, t[i], true) then
        return true
return false
```

Procedure next traverses E once
\Rightarrow running time $O(mn)$, where m is the size of E.