Expected learning outcomes

- Describe and apply concepts, methods, and theories of search, heuristics, games, knowledge representation, and planning
 - Describe admissible and consistent heuristics
 - Apply min-max and alpha-beta search
 - Knowledge of methods for cutting of search (Quiescence search, Forward pruning, Beam search)
 - Apply inference methods of First-Order Logic, e.g. Forward and Backward Chaining, resolution.

- Describe and apply concepts, methods, and theories of logic and probability theory and to analyze the power and limitation of their use for knowledge representation and reasoning systems
 - Approaches for capturing Knowledge Domain, e.g. symbolic representations using First Order Logic, Description Logics, probabilistic representations using joint probability distributions, Bayesian Networks, HMM, MDP.
Expected learning outcomes (2)

• Describe methods and theories of Bayesian networks, probabilistic reasoning over time and Hidden Markov Models, MDP, decision trees, and learning
 - DT: Know the definition of Shannon and binary entropy
 - DT: Construct a decision tree using entropies
 - RL: Difference between active and passive RL
 - RL/MDP: Definition of the Bellman EQ (ch. 17.2 & 21.3)
 - BN: Pearl’s Network Construction Algorithm
 - BN: Know how to define different queries in a BN
 - HMM: Know how to identify observable and unobservable variables from an application domain.
 - HMM: Construct a HMM using Markov assumptions.
 - HMM: Know the different inferences which a HMM can support.
 - MDP (new for this year): know the different components of a MDP.
 - MDP (new for this year): know the use of Bellman equation for solving MDP.
Expected learning outcomes (3)

- Describe and apply methods and theories for hybrid architectures, odometry, motion planning, topological and metric route planning, and localization and map generation
 - Know the difference (e.g. strengths and weaknesses) between deliberative, reactive, and hybrid architectures
 - Difference between natural and artificial landmarks
 - Difference between topological and metric path planning
 - Explain sensor model and evidential methods (Bayesian/HIMM)

- Multi-Agent Systems (new for this year)
 - Describe what MAS is and what it is expected to do better than ordinary intelligent systems
 - Define MAS from the four categories: autonomy, proactivity, reactivity, social capabilities
 - Define the BDI model.
 - Explain the four dimensions from Murphy: Heterogeneity, control, cooperation, goals