Approximations and representations of functions in the Finite Element Method

Martin Berggren

October 3, 2014

Approximation of functions

Aim: to approximate a function defined in a domain Ω (with possibly a complicated shape) such that it can be represented in the computer with a finite number of floats

- Finite volume method: uses **cell averages** to approximate the function. Leads to piecewise **constant** functions
- Such functions are sometimes (but rarely) used also for FEM
- FEM often require approximations that are **continuous** functions
- Common strategy: use continuous functions that are **linear** on each element of a **triangulation** of the computational domain

Triangulation

- Divide the domain Ω into nonoverlapping triangles. Max diameter of any triangle: h.
- N vertices located at points $x_i, i = 1, \ldots, N$.
- In a valid triangulation, each triangle should contain nodes only at vertices. No “hanging nodes”.

Piecewise polynomials

- Assume that u is a function defined on Ω
- In FEM, u is approximated with a function u_h that is glued together from simple functions on the triangles, typically polynomials
- Easiest example: u_h is **continuous** on Ω and **linear** on each triangle
Vector of nodal values

- u_h is uniquely defined by its values at the vertices x_i,
 $i = 1, \ldots, N$.
- In the computer, store these values in a N-vector u:

\[
 u = \begin{pmatrix}
 10.5 \\
 9.00 \\
 7.90 \\
 10.5 \\
 12.7 \\
 12.9 \\
 12.3 \\
 14.3 \\
 12.9 \\
 13.4 \\
 14.7
 \end{pmatrix}
\]

- Thus $u_i = u_h(x_i)$

Note: Distinguish between the vector u (left) and the function u_h (right)!

Basis functions

The function u_h can be recreated from the vector of nodal values $u = (u_1, \ldots, u_N)^T$ through the use of the nodal basis functions ϕ_i,
$i = 1, \ldots, N$:

\[
 u_h(x) = \sum_{i=1}^{N} u_i \phi_i(x)
\]

The “hat” or “tent” basis function $\phi_i(x)$ is continuous and piecewise linear, and satisfies, for each $i, j = 1, \ldots, N$,

\[
 \phi_i(x_j) = \begin{cases}
 1 & \text{if } j = i, \\
 0 & \text{if } j \neq i
 \end{cases}
\]

To verify this expansion, we consider, for $n = 1, \ldots, N$, the partial sums

\[
 u^{(n)}_h(x) = \sum_{i=1}^{n} u_i \phi_i(x)
\]
Partial sums

\[
 u_h(x) = \sum_{i=1}^{N} u_i \phi_i(x)
\]

\[
 u_h^{(3)}(x) = \sum_{i=1}^{3} u_i \phi_i(x)
\]

\[
 u_h^{(4)}(x) = \sum_{i=1}^{4} u_i \phi_i(x)
\]
Partial sums

\[u_h(x) = \sum_{i=1}^{N} u_i \phi_i(x) \]

\[u_h^{(7)}(x) = \sum_{i=1}^{7} u_i \phi_i(x) \]

\[u_h(x) = \sum_{i=1}^{N} u_i \phi_i(x) \]

\[u_h^{(8)}(x) = \sum_{i=1}^{8} u_i \phi_i(x) \]

\[u_h(x) = \sum_{i=1}^{N} u_i \phi_i(x) \]

\[u_h^{(10)}(x) = \sum_{i=1}^{10} u_i \phi_i(x) \]
Partial sums

\[u_h(x) = \sum_{i=1}^{N} u_i \phi_i(x) \]

\[u_h^{(1)}(x) = \sum_{i=1}^{11} u_i \phi_i(x) \]

Model problem

We will consider the following boundary-value problem:

\[-\Delta u = f \quad \text{in } \Omega \]
\[u = 0 \quad \text{on } \Gamma_D \]
\[\frac{\partial u}{\partial n} = g \quad \text{on } \Gamma_N \]

The finite-element discretization will lead to a linear system of equations

\[Au = b \]

for the vector \(u \) of nodal values in a finite-element function \(u_h \) that approximates the solution \(u \) of problem (1).

- Matrix \(A \) involves the basis functions \(\phi_i \), and the right-hand side vector \(b \) involves functions \(f \) and \(g \).
- The function \(u_h \) is not twice differentiable. We cannot form \(-\Delta u_h\)!