Distributed Systems (5DV147)

Time and Global States

Fall 2016

Motivation examples

-**Replication**
 -Updates applied in the same order at all sites

-**Monitoring**
 -All processes receive notification events in the same order

-**Allocation of share resources**
 -Fairness in processing requests

Why do we need concept of time?

- To determine order of events in a shared-nothing environment

Why do we not have global time?

- Clocks drift, are inaccurate, may fail arbitrarily, etc.

A global notion of a correct time would be tremendously useful

Logical time and logical clocks
Motivation

- Difficult to have a single global time
- What can we do? Let’s consider one process:

 | 1. a = 10 |
 | 2. b = 2 |
 | 3. c = a + b |
 | 4. send(c, proc2) |
 | 5. a = 4 |

 proc1

- What can we say about the order in which these operations are executed?

 (1, 2, 3, 4, 5, ..., i, ...)

Now for two processes ...

- We can say about the combined order of execution?
- What can we say about proc1.3 and proc2.2?
- What can we say about proc1.4 and proc2.4?
- What can we say about proc1.6 and proc2.6?

Now for two processes ...

- send(c, proc2)
- receive(b, proc1)
- send(b, proc1)

… we can say something about the order of some operations

Let’s be more formal

Let’s consider a distributed system P, of N processes:

 \[p_i, \ i = 1, 2, ..., N \]

Each process has state \(s_i \).

Three type of events \(e \) can occur at each \(p_i \):

 - Internal events, send events, receive events
 - Events are ordered within a process by the relation \(\rightarrow \)
 - Events define a history of \(p_i \) as described by \(s_i \)

\[
\text{history}(p_i) = h_i = (e_i^1, e_i^2, e_i^3, ...)
\]

What do we know now?

- We know the order of events occurring at the same process
- We know something about send and receive events

 \(\text{send causes a receive} \)

 \(\text{receive is the effect of send} \)

 \(\text{Cause and effect may not be violated} \)

 \(\text{An effect cannot be observed before the cause} \)

 \(\text{send operations must always come before receive operations} \)

Happened-before relation “\(\rightarrow \)”

HB1: If there exists a process \(p_i: e \rightarrow e' \), then \(e \rightarrow e' \)

HB2: For any message \(m: \text{send}(m) \rightarrow \text{receive}(m) \)

HB3: If \(e, e' \), and \(e'' \) are events such that \(e \rightarrow e' \) and \(e' \rightarrow e'' \), then \(e \rightarrow e'' \)

Two events are said to be concurrent if:

\(e = e' \) and \(e = e'' \)
A simple example

HB1: \(a \rightarrow b, c \rightarrow d, e \rightarrow f \)
No ordering for e.g., b and e
They are concurrent, denoted \(b \parallel e \)

HB2: \(a \rightarrow b \rightarrow c \rightarrow d \rightarrow f \)

How can we use the “\(\rightarrow \)” relation when implementing systems?

Lamport’s logical clocks

- Monotonically increasing counter
 - Counter serves as a timestamp
- Each process has a counter that increases when an event occurs (send and receive)
- Counter is sent with message
 - Recipient sets own clock to max(own, received) and then increases its own counter

Details

Denote timestamp of event \(e \) at \(p_i \) by \(L_i(e) \) and globally \(L(e) \)

LC1: Increment \(L_i \) before each event at \(p_i \), \(L_i = L_i + 1 \)

LC2: \((m \text{ is a message, } t \text{ is a timestamp}) \)

a) When \(p_i \) sends \(n \), it sends along the value \(t = L_i \)

b) On receiving \((m, t), p_j \), computes \(L_j = \max(L_j, t) \)
and then applies LC1 before time stamping the received event receive(n)

What can we say about our simple example

Evident that \(e \rightarrow e' \Rightarrow L(e) < L(e') \)
But, the opposite does not hold!
- e.g., \(L(b) > L(e) \), but \(b \parallel e \)
How can we create a total order?

Define global timestamps for e and e' to be (T_i, i) and (T_j, j) and $(T_i, i) < (T_j, j)$ iff $T_i < T_j$ or $T_i = T_j$ and $i < j$

Formally

VC1: Initially, $V_i[j] = 0$, for $i, j = 1, 2, ..., N$

VC2: Just before p_i timestamps e, it sets $V_i[j] = V_i[j] + 1$

VC3: p_i includes timestamp $= V_i$ in every send(m, timestamp)

VC4: When p_i receives timestamp in a message, it sets $V_i[j] = \max(V_i[j], \text{timestamp}[j])$, for $j = 1, 2, ..., N$

Vector clocks

- Keep track of known events at all processes (a vector or array of timestamps)
- Each process keeps a vector clock to timestamp local events
- Send vector clock with message
 - Receiver merges clocks by setting own values to the maximum of own values and received ones

Formally

VC1: $V = (L, L', L'')$

VC2: $V = (0, 0, 0)$

Vector clocks can be ordered
- $V < V'$ if all values are the same
- $V = V'$ if all values in V are \leq those in V'
- $V < V'\text{ if } VV'$ and V and V' are non-equal
Concurrent events

Vector clocks

Vector clocks have nice properties

Causal paths can be visualized

However...

They use more space

- expensive in terms of memory and bandwidth (O(N) in both cases)
- no upper bound on clock size
- it is better if processes don’t change dynamically

Vector clocks

Logical clocks are based on events in processes and the inter-event relationships (between processes)

Detect causal relationships – capability of one event to affect another event either directly or transitively

Happened-before relation

Some events are concurrent

Summary (2)

Lamport’s logical clocks are simple, but have problems with concurrent events

- Can derive total order, but with no physical significance
- Completely distributed
- Fault tolerant
- Impose minimal overhead

Vector clocks are more powerful, but also more costly

- Can differentiate when two events are concurrent

We often need to know the state of the entire distributed system of knowing if a particular property is true for the system as it executes

- Distributed garbage collection
- Stable property detection: distributed deadlocks, distributed termination detection
- Checkpointing

Global states
Simple with global time!
Just issue “report state at time X”
...we do not have this luxury

A simple approach
• Collect the state of each process one by one

Just process states are not enough!
Messages currently in the channels

Motivation
Global state
proc1 \{ S_1, S_2, S_3, S_4, S_5, S_6, ... \}
proc2 \{ S_1, S_2, S_3, S_4, S_5, S_6, ... \}

Each process changes state accordingly
s_i = <s_i^0, s_i^1, s_i^2, ...>

We can be more formal
Let’s remember that events at p_i defined a history
history(p_i) = h_i = <e_i^0, e_i^1, e_i^2, ...>
each process changes state accordingly
s_i = <s_i^0, s_i^1, s_i^2, ...>
The global history is the union of processes histories:

Let’s consider a prefix (first k events) of a process histories
h_{k_i} = <e_i^0, e_i^1, ..., e_i^k>
Cuts

A cut is a union of prefixes of process histories:

Frontier of the cut

States in which each process is after processing the last event in the cut:

A simple example

According to the definition, we can make any cut that we want, including ones that make no sense!

Consistent cuts and global states

- A cut is **consistent** if for each event in the cut
 - All events that happened before are also in the cut
 - $e \in C, f \rightarrow e \Rightarrow f \in C$
- We want to only consider **consistent cuts**
- Consistent global states correspond to consistent global cuts
 - We only move between consistent global states during execution: $S_0 \rightarrow S_2 \rightarrow S_2 \rightarrow ...$

Linearization and runs

- Total orderings of all events in the global history
 - A run is only consistent with the ordering of each process’ own local history
 - A linearization is consistent with the (global) happened-before relation
- Runs do not have to pass through consistent global states, but all linearizations do
 - s' is reachable from s if \exists a linearization from s to s'

Snapshot algorithm

- Chandy and Lamport, distributed algorithm for determining global states of a distributed system
- Constructs a snapshot of the global state (both processes and channels)
 - Ensures that the global state is **consistent**
 - Makes no guarantee that the system was actually in the recorded state!
Assumptions

- Neither channel nor processes fail
- Communication is reliable
- There’s a communication path between any two processes
 - Unidirectional channels with FIFO message delivery
- Any process may initiate a global snapshot at any time
- Algorithm does not interfere with the normal execution of the processes

How does the algorithm works?

- Each process records its local state and the state of the incoming channels
- The algorithm works by using markers for two purposes:
 - As a signal for saving a process state
 - As a means of determining which messages belong to the channel state
- State is recorded at each process,
 - Global state is formed by collecting states from all processes

Algorithm

Marker receiving rule for process p_i

On p_i’s receipt of a marker message over channel c:
- If (p_i has not yet recorded its state) it records its process state now;
- Records the state of c as the empty set;
- Turns on recording of messages arriving over other incoming channels;
- Else p_i records the state of c as the set of messages it has received over c since it saved its state.

Marker sending rule for process p_i

After p_i has recorded its state, for each outgoing channel c:
- p_i sends one marker message over c (before it sends any other message over c).

Snapshot example

P2 received marker on P1→P2 after, so it is part of recorded state
- Same for P1 and P3
- However, P3 sent out before the marker, and P2’s state snapshot does not include it
- Note that is neither part of the marker, and P2’s state snapshot does not include it
- Algorithm concludes that was in transit between P3 and P2

Summary

- There are some cases where it is necessary to know the global state of a system
- Lacking a global clock makes this difficult
- Global state encompasses both processes and channels states
- We introduced the concept of cuts and consistent cuts
- We learned how to captured consistent global states corresponding to consistent cuts
- Snapshot algorithm (Chandy & Lamport)

Reading

Chapter 14 “Time and Global state”, Distributed systems, 5th ed. By Coulouris, Dollimore, Kindberg and Blair
Next Lecture

Mutual exclusion and Elections