Introduction

What is Cryptography?

- Name derived from Greek for (hidden or) secret writing
- The practice and study of techniques for secure communication in the presence of adversaries
- The practical alternative to building secure systems
- Studied in mathematics, computer science, and electrical engineering

Fundamental Concepts

- Confidentiality — limitation of access to information to authorized parties
- Integrity — prevention of unauthorized alteration of information
- Authentication — identity and information origin verification
- Non-repudiation — inability to deny previous commitments or actions

Terminology

- plaintext: original unencrypted data
- ciphertext: encrypted (obscured) data
- cipher: (a set of) algorithm(s) for encryption & decryption
 - encryption(plaintext) -> ciphertext
 - decryption(ciphertext) -> plaintext
- "text" is historical, think bitstream

Evolution of Cryptography

- Basic cryptography principles are well illustrated by the evolution of ciphers and practices
 - transposition ciphers -> block ciphers
 - substitution ciphers -> one-time pads
 - shift ciphers -> algorithms
 - polyalphabetic substitution ciphers -> complex algorithms
 - encryption devices, e.g., Scytale, Enigma -> computers
Historical Perspective

- Secret communication mechanisms >4000 years
- Secret writing / Invisible ink (lemon juice)
 - text revealed under heat or UV light
 - relies on secrecy (knowledge of existence)
- Cryptography >2500 years
- Early ciphers typically operated on text data
- Strength of ciphers relied on secrecy, (lack of) knowledge of mechanisms, and the complexity of cryptanalysis

Modern Perspective

Introduction

Symmetric Encryption

Lessons to Learn

Steganography

Codes

Enigma

Vigenère Cipher

Breaking Ciphers

Classic Ciphers

Transposition Ciphers

Route Cipher

- Basic transposition cipher based on table format
- THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
- Eliminate whitespaces, map plaintext, transpose table
- Read out message
- Width of table is key

Spartan Scytale

- Transposition cipher (first mentioned ca 600 BC)
- Plaintext written on strip wrapped around a stick
- Identical sticks exchanged in advance
- Strip (message) sent (without stick)
- Device (stick) is key
- Dimension(s) of stick determines transposition parameter(s)

Substitution Ciphers

- Encryption based on a (character) translation table
- Construct a cipher alphabet for translation
 - plain alphabet: ABCDEFGHIJKLMNOPQRSTUVWXYZ
 - cipher alphabet: QWERTYUIOPASDFGHJKLZXCVBNM
- Encrypt (translate) data letter by letter
- Cipher alphabet is key
- Foundation for modern (bit-level) one-time pad systems
Modern Perspective

Symmetric Encryption

Lessons to Learn

Steganography

Codes

Enigma

Vigenère Cipher

Breaking Ciphers

Classic Ciphers

Algorithm parameter (keyphrase) is key

Analysis compares statistical properties of ciphertext to known properties of the language of the plaintext

Vulnerabilities

- exploit knowledge of structure or content of plaintext (or ciphertext)
- e.g., word length, frequency analysis

Exploits

- attack (potentially forced) misuse

Exhaustive parameter space search (brute force)

- with known plaintext-ciphertext (e.g., find cipher parameters)
- without known plaintext-ciphertext (e.g., search for syntax patterns or known values)

Direct letter-level translations preserve basic statistical properties of the original (plaintext) message

Statistical properties (e.g., word lengths and letter frequencies in the English language) provide hints that can be used in deciphering messages

Breaking Classic Ciphers

English Letter Frequencies

- provides direct clues for translation
- provides heuristics for brute force attacks

Select keyphrase

- "I AM SO CLEVER"

Eliminate whitespaces and duplicates

- "IAMSOCLEVR"
Modern Perspective - Cryptography

Symmetric Encryption
- Lessons to Learn
- Steganography
- Codes
- Enigma
- Vigenère Cipher
- Breaking Ciphers
- Classic Ciphers

Enigma
- German WWII electro-mechanical cipher-machine
 - keyboard - input
 - lampboard - output
 - plugboard - remaps letters prior to input
 - rotors - dynamically remaps characters (rotational (shift) substitution cipher)
 - reflector - remaps character and returns the signal
- A key is pressed, signal is mapped on the plugboard, passes through rotors, returned from the reflector, back through the rotors, back through plug board, and a key is lit on the lampboard
- Rotors turn to a new position on each key press
- Each character is remapped at least 7 times (minimum 3 rotors + reflector)

Vigenère Cipher
- Polyalphabetic substitution cipher that aims to disguise letter frequency of plaintext messages
- Uses a (repeated) key to switch alphabets in encryption (each letter encrypted using a different alphabet)
- Shift-based translation table (Vigenère square)
- Cipher index constructed from (repeated) keyphrase
- Plaintext and keyphrase letters used as indices in table
 - encryption: plaintext horizontal, keyphrase vertical
 - decryption: keyphrase vertical, find ciphertext char
- Encrypt letter by letter using indexed translation table
 - THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
 - REMS Clever1AMS Clever2AMS Clever3AMS Clever4AMS Clever5
- Vigenère Square
- HIDING THE KEY
- HIDING THE MESSAGE
- Vigenère Cipher
- Attack Methodology
- Similar to solving a (hard) sudoku
 - hypothesize a value-position pair
 - evaluate hypothesis based on known rules
- Infer evaluation rules from knowledge of (the habits of) communicating parties and / or the context(s) of the communication
- Build evaluation heuristics on (combinations of) assumptions based on statistical knowledge of message
 - the most frequently occurring letter is 'e'
 - the most frequently occurring 3-letter word is "the"

Historical Introduction
- Today
- Historical
- Perspective
- Classic Ciphers
- Breaking Ciphers
- Vigenère Cipher
- Enigma

Historical Attack Methodology
- Each character is remapped at least 7 times
- Rotors turn to a new position on each key press
- Encrypt letter by letter using indexed translation table
 - THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
 - Encrypt letter by letter using indexed translation table
 - THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
 - Hiding the key
 - Hiding the message

Sudoku

```
5 3 7
6 1 9 5
9 8 3 1
8 6 2 3
7 2 6 3
6 4 1 9 5
8 7 9
```
Enigma

- WWII Enigma decryption machines initially developed by the Polish, adapted and developed by the allies
- Enigma message decryption requires Enigma parameters to be determined (settings changed daily)
 - selection of rotors: 60 (3 of 5) - 336 (3 of 8) permutations
 - plugboard connections: ca. 1.5×10^{26} permutations
- initial rotor configuration: ca. 1.7×10^{6} permutations
- Each Bombe emulated 36 Enigmas for parallel investigation of rotor settings
 - reduced the rotor order and position search space to a manageable size for further (manual) analysis

Enigma Message Analysis

- Hypothesize plaintext based on knowledge of patterns
 - military jargon and operator communication habits
 (improper Enigma use provided clues to configurations)
- Manual investigation deduced plugboard connections
 - the Enigma would never translate a letter to itself
 - any configuration that produced a letter self-mapping could be eliminated
- Candidate parameter sets evaluated by Bombes
- Decryption setting results were fed into a replica Enigma to see if they produced German language

Codes

- A code aims to obscure a message so that it cannot be understood by unauthorized parties
- Establishes a semantic for messages (codebooks with codewords)
- Example: Idiot code
 - predetermined two-party communication semantic
 - e.g., any sentence containing the word 'night' means 'attack'
 the location mentioned in the sentence.
 - plaintext: attack Gotham
 - codetext: Batman walks the streets of Gotham at night

In WWII native languages were used in combination with codes (Apache, Comanche, Navajo, Basques, Welsh)

- Letters and everyday words with replaced semantics
 - A = WOL-LA-CHEE (ant), BE-LA-SANA (apple), TSE-NILL (apple),
 JU-NAL (apple),
 - January = AT-NAH-BE-YAZ (small eagle)
 - tank = CHAY-DA-GAHI (tortoise)
- Code never broke, even confused a native speaker not trained in the code
- Native dialects differ from non-native dialects
 (robust form of impersonation detection)
Modern Perspective

Historical Introduction

Today

Kerckhoff’s Design Principles

A set of design principles for ciphers formulated in 1883

1. The system must be practically, if not mathematically, indiscipherable;
2. It should not require secrecy, and it should not be a problem if it falls into enemy hands;
3. It must be possible to communicate and remember the key without using written notes, and correspondents must be able to change or modify it at will;
4. It must be applicable to telegraph communications;
5. It must be portable, and should not require several persons to handle or operate;
6. Lastly, given the circumstances in which it is to be used, the system must be easy to use and should not be stressful to use or require its users to know and comply with a long list of rules.

Codes vs Cryptography

- Codes are expensive to develop and maintain
- Ciphers are easier to operate
 - code(book) broken = entire system compromised
 - ciphers can be reused with new keys
- Ciphers scale to greater scale
 - a small group of people can share a code
 - an army can use a cipher
- Combinations can be used to improve security
 - codes make crypanalysis harder

Steganography

- Hiding messages inside other messages
- Historical versions: invisible ink, microdots
- Modern versions: digital watermarking
 - amplitude modulation, e.g., alter (least significant bit) pixel values in images
 - spread-spectrum, e.g., add (noise) values in the frequency domain representation of signals
 - quantization, e.g., modify bit representations of signals
- Often used in conjunction with cryptographic techniques
 - encoded messages hidden in plain sight

Crypto Design

- Kerckhoff’s principle
 - “A cryptosystem should be secure even if everything about the system, except the key, is public knowledge”
 - “the strength of a crypto-system must not depend on the secrecy of the cipher but only on the secrecy of the key”
- Shannon’s maxim
 - “the enemy knows the system, i.e., one ought to design systems under the assumption that the enemy will immediately gain full familiarity with them”
- If attackers cannot break an algorithm with detailed knowledge of the algorithm mechanics, they can certainly not do so without that knowledge
- Err on the side of caution / assume worst case scenario

Lessons to Learn

- Even the most complex ciphers have lifetimes
- Strength of ciphers rely on
 - the integrity of the algorithm
 - the complexity of the algorithm
 - the strength (size) of the key
- Strength of security system rely on
 - cipher systems
 - correct application of ciphers
 - protocols
 - user awareness, understanding and training

Modern Perspective

- Computers facilitate new types of security systems
 - more advanced ciphers
 - more advanced security attacks
- Mathematics of cryptography (both ciphers and attacks) are now both better understood and more well spread
- …and so are brute force attack tools and resources
Modern Cryptography

- (General and special purpose) Computer based
- Mathematically advanced cipher algorithms
- Operate on generic bitstreams
- Cipher strengths modeled towards infeasibility of brute force attacks
- Ciphers continuously updated
 - weaknesses are discovered
 - hardware capabilities evolve

Symmetric Encryption

- Commonly referred to as private key encryption
- Data encrypted and decrypted using the same key
- Anyone with access to the key can decrypt the data
- Comparatively fast
- Suffers from the key distribution problem

Block Cipher

- Deterministic (fixed complexity) algorithm that operates on a fixed length group of bits (a block) to encrypt data using a symmetric key
- Typically implemented using iterated product ciphers
 - repeated combined application of simple operations, e.g., substitutions and permutations, that obscure data
- Common design: substitution-permutation networks
 - graphs of key diffusion (rotation and derivation) schemes, (substitution) boxes, and (permutation) boxes
- Aims for high avalanche effect
 - small changes in input bits yield large changes in output

Block Cipher Modes of Operation

- Algorithms that use block ciphers to provide information services
 - encryption: confidentiality
 - hash/checksum: integrity
- Often requires an initialization vector (IV)
 - a set of (bit) seed values for the algorithm
 - non-repeating
 - (for some purposes) random
- May require input to be padded to align with block size
 - add null bytes (null-terminated strings)
 - add a one bit followed by zero bits
 - add a 0x80 byte followed by zeroes
 - add n bytes of value n

Substitution-Permutation Network

- Electronic Code Book (ECB)
 - blocks encrypted independently
- Cipher-Block Chaining (CBC)
 - blocks XORed to the previous encrypted block
 - Initialization Vector (IV) used for the first block
- Output Feedback (OFB)
 - repeated encryption of the IV yields keystream
- Cipher Feedback (CFB)
 - self-synchronizing stream ciphers
 - one of the output bits is added to the next message bit
- Counter Encryption (CTR)
 - key x = (IV + i) \ key
 - similar to OFB
 - less costly and less sensitive to birthday attacks
Symmetric Encryption

Electronic Codebook (ECB)

Cipher-Block Chaining (CBC)

Message Authentication Code (MAC)

- Use a block cipher with Cipher-Block Chaining
- Discard all blocks but the last
- Provides integrity and authenticity

Stream Cipher

A symmetric encryption algorithm that obscures data by combining plaintext digits with those of a keystream
- Keystreams (streams of pseudorandom values) derived from key during encryption
- Typically implemented using bit-level XOR
- Very fast
- Low hardware requirements (compared to block ciphers)
- Limited security
 - Keystream must have long periods
 - Keystreams (or initialization vectors) must not be reused
- Keystreams can be generated from block ciphers (using e.g., OFB or CTR modes)

One-Way Encryption

Data encrypted using secret keys
- Data cannot be decrypted
- Cipher texts (to a high probability) uniquely mapped to data content
- Cipher texts used instead of data in situations where data must be kept secret (e.g., passwords)
- Closely related to hashcodes and Message Authentication Codes (MACs)

Symmetric Algorithm Examples

- Advanced Encryption Standard (AES), Rijndael
- Data Encryption Standard (DES), Lucifer (obsolete)
- Triple DES (3DES), 3x DES with CBC
- International Data Encryption Algorithm (IDEA)
- Blowfish
- RC4
- ...
Challenge-Response

- Basic assumption: shared secret S
- Client authentication
 - server generates and sends a random challenge C
 - client computes and sends $\text{hash}(C \& S)$
 - server computes the same hash to verify client secret
- Mutual client-server authentication
 - server generates and sends a random challenge C_s
 - client generates a random challenge C_c and sends $C_c \& \text{hash}(C_s \& \text{secret})$
 - server verifies client hash and sends $\text{hash}(C_c \& \text{secret})$
 - client verifies server hash
- To increase security, add
 - key derivation functions
 - time stamps
- Session key exchange
 - authenticate and exchange encrypted session key

Advanced Distributed Systems P-O Östberg
(Introduction to) Cryptography Department of Computing Science, Umeå University