Abstract
This paper presents an approach to learning an optimal behavioral parameterization in the framework of a Case-Based Reasoning methodology for autonomous navigation tasks. It is based on our previous work on a behavior-based robotic system that also employed spatio-temporal case-based reasoning [3] in the selection of behavioral parameters but was not capable of learning new parameterizations. The present method extends the case-based reasoning module by making it capable of learning new and optimizing the existing cases where each case is a set of behavioral parameters. The learning process can either be a separate training process or be part of the mission execution. In either case, the robot learns an optimal parameterization of its behavior for different environments it encounters. The goal of this research is not only to automatically optimize the performance of the robot but also to avoid the manual configuration of behavioral parameters and the initial configuration of a case library, both of which require the user to possess good knowledge of robot behavior and the performance of numerous experiments. The presented method was integrated within a hybrid robot architecture and evaluated in extensive computer simulations, showing a significant increase in the performance over a non-adaptive system and a performance comparable to a non-learning CBR system that uses a hand-coded case library.

Index terms: Case-Based Reasoning, Behavior-Based Robotics, Reactive Robotics.

I. INTRODUCTION
Behavior-based control for robotics is known to provide good performance in unknown or dynamic environments. Such robotic systems require little a priori knowledge and are very fast in response to changes in the environment, as they advocate a tight coupling of perceptual data to an action. At any point of time, based on incoming sensory data, a robot selects a subset of behaviors (called a behavioral assemblage) from the set of predefined behaviors and then executes them. One of the problems, however, of this approach is that as the surrounding environment gradually changes, the parameterization of the selected behaviors should also be adjusted correspondingly.

Using a constant, non-adaptive, parameterization for most of the non-trivial cases results in robot performance far from being optimal. Also, choosing the "right" set of parameters even in the case of constant parameterization is a difficult task requiring both knowledge of robot behaviors and a number of preliminary experiments. It is desirable to avoid this manual configuration of behavioral parameters in order to make mission specification as user-friendly and rapid as possible.

As one of the possible solutions to these problems, we previously proposed the use of Case-based Reasoning methodology for the automatic selection of behavioral parameters [3] for navigational tasks. This approach resulted in significant robot performance improvement and also made the manual configuration of parameters unnecessary. This method, however, required manual creation of a case library, where each case is indexed by environmental features and defines a set of behavioral parameters. Even though the creation of the library of cases needed to be performed only once for a given robot architecture, it is still very tedious work.

The idea behind this new research is to fully automate the creation of a library of cases, so that the case-based reasoning (CBR) unit automatically creates and optimizes cases in the library as the result of an automatic experimental procedure. At the training stage the system starts off with a completely empty library. As training proceeds new cases are created whenever there are no close enough matches already present in the library. Whenever a case is selected for the application, it goes through an adaptation step that, based on the previous performance of the case, adapts the case in the direction that resulted in the performance improvement. The case is then applied and its performance is re-evaluated and stored for the use by the adaptation routine the next time the case is selected. Thus, in effect, the CBR unit performs a gradient descent search in the space of behavioral parameters for each of the cases in the library. Once the training is over and a robot exhibits a good performance in the training session, the library is "frozen" and can be used in real missions. It is important to note, however, that the training does not need to be separated from actual mission execution. That is, an alternative to the above procedure is to have the robot learn the cases as it executes missions. In this case, even though
the performance in the first robot missions would be far from optimal, as more and more missions are executed the robot's performance would consistently improve.

In section III, we demonstrate how a simulated robot learns new cases during training and compare its performance with both non-adaptive and non-learning CBR systems. The results show that the learning system significantly outperforms a non-adaptive system while it is comparable to a non-learning CBR system for which the library of cases was manually created as a result of extensive experimentation. Moreover, if the library of cases for the non-learning CBR system was not well optimized for actual environments that are similar to the test environments then the learning CBR system outperforms even the non-learning CBR as well.

A case-based reasoning methodology is not new to the field of robotics. It was successfully used to help in solving such problems as path planning based on past routes, high-level action-selection based on environment similarities, place learning, and acceleration of complex problem solving based on past problem solutions [4, 5, 6, 7, 8, 14]. Previous work has also been performed on the incorporation of case-based reasoning in the selection of behavior parameters by our group [1, 2, 3] (upon which this present research is partially based) as well as a few other groups [e.g., 13]. The approach described in this paper extends our previous work by learning new cases from scratch either during a training step or while executing a mission. The method has also been incorporated within a complete hybrid robot architecture and extensively evaluated in computer simulations. Extensive research has also been conducted on learning robot behaviors using other methods such as neural networks, genetic algorithms, Q-learning, and others [15, 16, 17]. In contrast to some of these methods, this research concentrates on the automatic learning of an optimal parameterization of the behaviors rather than the behaviors themselves. It also incorporates some prior knowledge using the case-based reasoning methodology during learning and thus decreases the number of experiments required for obtaining a good behavioral parameterization function as defined by a library of cases.

II. METHODOLOGY

A. Framework

The CBR unit operates within the MissionLab system [9], which is a version of AuRA (Autonomous Robot Architecture) [10]. It is a hybrid architecture that consists of a schema-based reactive system coupled with a high-level deliberative planning system. The reactive component consists of primitive behaviors called motor schemas [11] grouped into sets called behavioral assemblages. Each individual primitive behavior is driven by its perceptual input (perceptual schema) producing its own motor response. The vectorial responses from each of the active schemas are added together resulting in an overall behavior output. The weighted sum of the vectors, after normalization, defines the final vector that is sent to the motor actuators. Hence, each motor schema affects the overall behavior of the robot.

It is the reactive level that the CBR unit operates at. In particular, it selects the set of parameters for a currently chosen behavioral assemblage that is best suited to the current environment. As the robot executes its mission, the CBR unit controls the switching between different sets of behavioral parameters in response to changes in the environmental type. Each such set of parameters constitutes a case in the CBR system and is indexed by environmental features. The adaptation step in the case-based reasoning subsequently fine-tunes the parameters to a specific type of environment, allowing the library of cases to be small. The overall control flow is shown in Figure 1.

The CBR unit was evaluated on the behavioral assemblage of type GOTO that is used for goal-directed navigation (Figure 2). The assemblage contains the following four primitive motor schemas: MoveToGoal, Wander, AvoidObstacles and BiasMove. The MoveToGoal schema produces a vector directed towards a specified goal location from the robot's current position. The Wander schema generates a random direction vector, adding an exploration component to the robot's behavior. The AvoidObstacles schema produces a vector repelling the robot from all of the obstacles that lie within some given distance from the robot. The BiasMove schema produces a vector in a certain direction in order to bias the motion behavior of the robot. The CBR module controls the following parameters:

\[
\langle Noise_Gain, Obstacle_Sphere, MoveToGoal_Gain, Bias_Vector_Gain, Bias_Vector_X, Bias_Vector_Y \rangle
\]
The gain parameters are the multiplicative weights of the corresponding schemas. The Noise_Persistence parameter controls the frequency with which the random noise vector changes its direction. Obstacle_Sphere controls the distance within which the robot reacts to obstacles with the AvoidObstacles schema. Bias_Vector_X and Bias_Vector_Y specify the direction of the vector produced by BiasMove schema. Thus, a case in a library is a set of values for the above parameters.

B. Overview of non-learning CBR module

This section gives a high-level overview of the non-learning CBR module. The technical details can be found in [3]. The following section provides the details of the extensions that were made to the CBR module that make it capable of both learning new and optimizing old cases (the learning CBR module).

The overall structure of the non-learning CBR unit is similar to a traditional non-learning case-based reasoning system [12] (Figure 3). First, the sensor data and goal information are supplied to the Feature Identification sub-module of the CBR unit. This sub-module computes a spatial features vector representing the relevant spatial characteristics of the environment and a temporal features vector representing relevant temporal characteristics. The spatial features vector is used to compute a traversability vector F of size k. A space around the robot is broken into k equal angular regions and each element of the vector F represents the degree to which the corresponding region can be traversed. The number of angular regions is configurable and depends on the type of sensors used (i.e., it is resolution-limited) and the allowed computational overhead. For all the experiments reported here, there were four angular regions used. The details of how the traversability vector is computed appear in [3]. In short, the traversability of a particular region decreases as the size of the largest cluster of sensor readings (readings appearing sufficiently close to each other) in this region increases, and increases as the distance between the robot and this cluster increases. The temporal features vector consists of just two elements: short-term and long-term robot velocities normalized by the robot maximum velocity. Both spatial and temporal vectors are passed forward for a best matching case selection.

C. Learning CBR module

This section provides an overview of the learning CBR module (Figure 4), emphasizing the extensions that
were made to the non-learning CBR algorithm described previously. First, as before the sensor data and goal information are provided to the Feature Identification sub-module that operates identically to the Feature Identification sub-module in the non-learning CBR module. The resulting spatial and temporal feature vectors are then passed to the best matching case selection process.

1) Case Selection

As before, at the spatial case selection step the spatial similarity between each case in the library and the current environment is computed as the weighted Euclidean distance between the case and environmental traversability vectors. Now, however, instead of selecting all the cases that have a spatial similarity within some delta from the similarity of the best spatially matching case, the cases are selected at random, with their probability of being selected proportional (according to an exponential function) to the difference between their spatial similarity and the spatial similarity of the best spatially matching case. Figure 5 illustrates this case selection process. Case C1 is the best spatially matching case and has a 100 percent probability of being selected to the set of spatially matching cases. Cases C2 and C4 are also selected as a result of random case selection biased by their spatial similarities. The idea behind adding such randomness to the case selection process is to bias the exploration of cases by their similarities with the environment. Similarly, at the temporal case selection stage, the cases that were selected as spatially matching cases go through the random selection with the probability of being selected biased by the differences between their temporal similarity and the temporal similarity of the best temporally matching case. Thus, in the example in Figure 5 case C4 is the best temporally matching case and therefore is selected for the next selection step. Case C1 is also selected at random for the next selection step whereas C2 is not. The cases that pass these two selection stages are also called spatially and temporally matching cases and are forwarded to the last case selection stage.

At the last selection step just one case is selected at random with a probability of being selected proportional to the weighted sum of case spatial similarity, temporal similarity and case success. The case success is a scalar value that reflects the performance of the case, and is described below. Thus, for the example shown in Figure 5, C1 has a higher weighted sum of spatial and temporal similarities and success, and therefore has a higher chance of being selected than C4. In this particular example, C1 is indeed selected as the best matching case.

Once the case is selected, as before, the case switching decision tree decides whether to continue to use the currently applied case or switch onto the selected best matching case. If the switching decision tree says that the currently applied case should remain active, then nothing else needs to be done in this cycle of the CBR unit. Otherwise, the CBR unit continues its execution with the evaluation of the currently applied case performance as described next.

2) Old Case Performance Evaluation

The velocity of the robot relative to the goal (the speed with which the robot is approaching its goal) is used as the main criteria for the evaluation of case performance. The pseudocode for the case (C) performance evaluation is given below:

```
Compute velocity V(C) according to Equation (1)
If (V(C) ≤ 0 and C was applied last) //delayed reinforcement
Postpone the evaluation of C until another K-1 cases are applied or C is selected for application (whichever comes first)
else
if (V(C) > µ Vmax(C) and V(C) > 0) //µ=0.9
I(C) = max(I(C) + 1);
else
I(C) = I(C) − 1;
end
I(C) = min(Imax, I(C)); //limit I(C);Imax=100
Update Vmax(C) according to Equation (2)
if (C was applied last)
if (V(C) > µ Vmax(C) and V(C) > 0)
Increase S(C) by ∆ proportional to I(C);
else
Decrease S(C) by ∆;
end
else
if (Robot advanced towards its goal)
Increase S(C) by ∆ proportional to I(C);
else
Decrease S(C) by ∆;
end
end
```

Since for some cases the task is to get the robot closer to the goal, while for other cases the task is to get the robot out of local minima such as “box canyons” created by obstacles, the robot’s velocity relative to the goal may not always be the best evaluation function for case performance. Instead, a delayed evaluation of the case performance may be necessary. For this reason the information on the last K applied cases is kept. K defines a learning horizon and in this work is chosen to be 2. Thus, when a new case is about to be applied, the performance evaluation function is called on each of the following cases: the case that was applied last; the case that was applied K cases ago and was not yet evaluated (the evaluation was postponed); and the case that was applied some time previously, that was not yet evaluated and is the very case selected for a new application. At the very beginning of the performance evaluation a check is done: if a case C was just applied and the robot did not advance towards its goal as a result of the case application (V(C) ≤ 0, where V(C) denotes
the average velocity of the robot relative to its goal from the
time just before case C was applied up until the current
time), then the case performance evaluation is postponed.
Otherwise, the performance evaluation proceeds further.
Each case has a number of variables that represent
the recent performance of the case and need to be updated
in the performance evaluation routine. The average velocity
of the robot relative to the goal for case C is computed as
given:
\[V(C) = \frac{\frac{g}{t_{b}(C)} - \frac{g}{t_{curr}}}{t_{curr} - t_{b}(C)} \] \hspace{1cm} (1)
where \(t_{b}(C) \) is the time before the application of case C, \(t_{curr} \)
is the current time and \(g \) is the distance to the goal at time \(t \).
One of the variables maintained by each case describing
case performance is \(V_{max}(C) \); the maximum average velocity
of the robot relative to the goal as a result of the application
of case C. This velocity is updated after every performance
evaluation of case C. Equation 2 is a form of “maximum
of case C. This velocity is updated after every performance
of the robot relative to the goal as a result of the application
it is larger than \(V(C) \) and instantaneously jumps to \(V(C) \)

\[V_{max}(C) = \max(V(C), \eta \cdot V_{max}(C) + (1 - \eta) \cdot V(C)) \] \hspace{1cm} (2)
where \(\eta \) is a large time constant (0.99 for this work).

However, before \(V_{max}(C) \) is updated a decision is made
on whether the case resulted in performance
improvement or not. The performance is considered to
improve if \(V(C) > \mu \cdot V_{max}(C) \) and \(V(C) > 0 \), where \(\mu \) is close
to 1. Thus, the case performance is considered to be an
improvement not only when the velocity is higher than it
has ever been before but also when the high velocity is
reasonably sustained as a result of the case's application.
The variable \(I(C) \) maintains the number of the last case
performance improvements and is used in the adaptation
step to search for the adaptation vector direction.

Finally, the case success, \(S(C) \), is also updated. If
the performance evaluation is not postponed, then the case
success is increased if the case performance improved (the
performance improvement is defined by the same formula
as before) and is decreased otherwise. If, however, the case
evaluation was postponed, then the case success is
increased if the robot advanced sufficiently towards its goal
after the case was applied and is decreased if the robot has
not advanced at all. In either case the increase in the case
success is proportional to the number of times the
application of the case resulted in its performance
improvement, \(I(C) \). This adds momentum to the
convergence of case success. The more there are recent
case improvements, the faster the case success approaches
its maximum value (1.0) indicating full convergence of the
case. The case success is used in case selection to bias the
selection process, and in case adaptation to control the
magnitude of the adaptation vector. It will be discussed
further below.

3) Case Creation Decision

At this step, a decision is made whether to create a
new case or keep and adapt the case that was selected for
the application. This decision is made based on the
weighted sum of the temporal and spatial similarities of the
selected case with the environment and on the success of
the selected case. If the success of the selected case is high
then it must be very similar to the environment, mainly
spatially, in order for this case to be adapted and applied.
This prevents making the case success diverge based on
environments that do not correspond to the case. If the case
success is low, then the case similarity may not be very
close to the environment and still the case is adapted and
applied. In any event, the size of the library is limited (for
this work a limit of 10 cases was used) and therefore if the
library is already full then the selected case is adapted and
applied.

If it is decided that a new case should be created,
then the new case is initialized with the same output
parameters (behavioral parameters) as the selected case but
input parameters (spatial and temporal feature vectors) are
initialized to the spatial and temporal feature vectors of the
current environment. The new case is saved to the library
and then passed to the adaptation step. If no new case is
created then the selected case is passed directly to the
adaptation step.

4) Case Adaptation

Independent of whether the case to be applied is an
old case or was just created, the case still goes through the
adaptation process. Every case C in the library also
maintains an adaptation vector, \(A(C) \) that was last used to
adapt the case output parameters. If the case was just
created then the adaptation vector is set to a randomly
generated vector. The adaptation of a case happens in two
steps. First, based on the case’s recent performance, the
adaptation vector is used to adapt the case C output
parameter vector, \(O(C) \):

\[\text{if } (I(C) \leq 0) \]

//change the adaptation direction
\[A(C) = -\lambda \cdot A(C) + v \cdot R; \]
end
//adapt
\[O(C) = O(C) + A(C); \]

If the case improvement \(I(C) \) does not show
evidence that the case was improved by the last series of
adaptations, then the adaptation vector direction is reversed,
decreased by a constant \(\lambda \) and a randomly generated vector
\(R \) scaled by a constant \(v \) is added to assure exploration in
the search for optimal parameters.

At the second adaptation step, the output
parameters are altered based on the short-term and long-
term relative velocities of the robot (elements of the
temporal features vector). This adaptation step is similar to
the adaptation step performed in the non-learning CBR
module [3] and, in short, increases the Noise_Gain and
Noise_Persistence behavioral parameters inverse
proportionally to the short-term and long-term relative
velocities of the robot. The idea is that these two parameters
are increased more and more if the robot is stuck longer and longer at one place (such can be the case with difficult “box canyons”).

Finally, the behavioral parameters of the case are limited by their corresponding bounds. Also, Obstacle_Gain is limited from below by the sum of Noise_Gain, MoveToGoal_Gain and Bias_Vector_Gain. This ensures that in any event the robot does not collide with obstacles.

After the case is adapted it is applied. The application is simply extracting the behavioral assemblage parameters from the adapted case and passing them to the behavioral control unit within the MissionLab system.

III. EXPERIMENTS

A. Experimental Analysis

The performance of the system was evaluated in a simulated environment. MissionLab provides a simulator as well as logging capabilities, allowing the collection of the required statistical data easily.

Figures 6 and 7 demonstrate the training process of a robot. In Figure 6 the training is done on heterogeneous environments (the obstacle density and pattern change within one robot mission), whereas in Figure 7 the training is done on homogeneous environments (the obstacle density and pattern remain constant throughout a robot mission). These were two separate training processes resulting in two different learned libraries. Figures 6(top) and 7(top) show screenshots of MissionLab during the first robot runs. At the beginning of both runs the libraries do not contain any cases and are created as the robot proceeds with its mission. Black dots of various sizes represent obstacles and the curved line across the picture depicts the trajectory of the robot after it completed its mission. In Figure 6 the mission area is 350 by 350 meters, whereas in Figure 7 it is 150 by 150 meters. Since the library is being created from scratch, the performance of the robot in these first runs is very poor. The search for optimal parameterization has just started in these runs and thus the robot behavior is very noisy. In
contrast, after about fifty training runs for both heterogeneous and homogeneous environments, the robot successfully learned more optimal parameterizations and therefore the robot trajectory in final runs (Figures 6 and 7 bottom) is far better. A good example of learning an optimal parameterization is in the last (rightmost) grid of small obstacles in the heterogeneous environment. In order for a robot to traverse such a dense but highly ordered obstacle environment the robot has to apply what is called a “squeezing” strategy. In this strategy Obstacle_Sphere is decreased to its minimum while MoveToGoal_Gain has to prevail over Noise_Gain. This makes the robot squeeze between obstacles towards its goal. In the first run this strategy is not known to the robot, and it takes a long time for the robot to go through this area. In contrast, in Figure 6 (bottom) the robot successfully “squeezes” through this area along a straight line. The log files show that the robot trajectory in the final run in the heterogeneous environment is 36 percent shorter than in the initial run while in the homogenous environment the final run is 23 percent shorter than the initial run.

It is important to note, however, that not all of the cases converge. In particular, the cases created for large “box canyon” environments often do not converge. Instead, they seem to maintain aggressive adaptation vectors together with the large Noise_Gain values. In most cases it appears to be sufficient for the good performance of the robot. On the other hand, most of the cases that correspond to “squeezing” strategy, for example, converge showing that the robot successfully learns to discriminate between these two scenarios based on the spatial and temporal features of the environment.

B. Experimental Results

Figures 8 through 11 show the statistical data gathered in the simulations. Three systems were evaluated: non-adaptive which did not use any adaptation of behavioral parameters; a system that employed the non-learning CBR module for the adaptation of behavioral parameters; and a system with the learning CBR module. Cases for the non-learning CBR module were created manually by running preliminary experiments to configure them optimally. Three libraries for the learning CBR system were created automatically by running about 250 training runs. All three libraries were evaluated and the data in the graphs contains average values over the three libraries. For the runs with the non-adaptive system, the optimal set of parameters was chosen for a given average obstacle density. This was equivalent to a user specifying the optimal parameters for a given mission.

Figures 8 and 9 show the performance of a simulated robot on a navigational task in heterogeneous environments (such as the one shown in Figure 6). Overall, the results for 37 missions in different heterogeneous environments were gathered. The performance of a robot is represented by the time steps it takes to complete its mission, as well as the percentage of completed missions. Thus, the amount of time, on average, it takes the learning CBR system to complete a mission is better than for a non-adaptive system while worse than for a non-learning one. This result is expected as the library for the non-learning CBR system was manually well optimized on the set of heterogeneous environments. The mission completion rate (Figure 9) is about equal for both non-learning and learning
CBR systems. The non-adaptive system has the lowest mission success rate.

Figures 10 and 11 report the results of tests in homogeneous environments such as the one shown in Figure 7. In each of the figures, the front row is for an environment with a 15% obstacle density and the back row is for an environment with 20% obstacle density. For each environment, fifty runs were conducted for each algorithm to establish statistical significance of the results. In these tests, a system that employs learning CBR outperforms even the non-learning CBR system not to mention the non-adaptive one. This is true in terms of both criteria: the average mission execution time and mission success rate. The reason for this is that even though the non-learning CBR system performs very well in homogeneous environments it was manually optimized using a sub-set of environments used for heterogeneous environment tests. As a result, the learning CBR had an opportunity to learn cases that were better suited for the homogeneous environments than the ones that were in the library of the non-learning CBR module. Non-adaptive, on the other hand, performs far from optimally on these environments and even more importantly exhibits only 46 percent mission completion rate for denser environments (Figure 11, 20% density).

IV. Conclusion

This paper presents a robotic system that incorporated learning into a previously developed case-based reasoning module used for the selection of behavioral parameters. Not only does it significantly improve the performance of the robot in comparison to a non-adaptive system but it also potentially improves the performance over a non-learning CBR module if its library was not well optimized for test environments, as was shown in the experiments. Automatic learning of cases is also favored as the process of manually creating a CBR case library is tedious and requires knowledge of both robot behavior and the operation of the CBR module as well as numerous experiments. The case library also had to be manually re-configured every time a new robot architecture is targeted. In contrast, with the learning CBR module the process of library configuration is fully automatic, namely through training. This now makes unnecessary any configuration of behavioral parameters even to create an initial case-based reasoning library. Moreover, the robot can learn cases while executing its missions, even avoiding the automatic training process if the accompanying performance deterioration in the initial first missions is acceptable. As more and more missions are executed the better and better the parameterization becomes, resulting in enhanced robot performance.

Future work includes the evaluation of the system on real robots (Nomad 150s and ATRV-JRs). This presented research is part of a larger project involving the incorporation of a range of different learning techniques into MissionLab. It is planned to investigate how such multiple techniques can help in learning cases more efficiently [e.g., 18].

V. Acknowledgments

The authors of this paper would like to thank the following people who were invaluable in the work with MissionLab: Dr. Douglas MacKenzie, Yoichiro Endo, William Conrad Halliburton, Mike Cramer, Alexander Stoytchev, and Dr. Tom Collins.

REFERENCES

