Overview

- SLAM large Environments
- CEKF / Sub-Optimal SLAM
- Aiding SLAM with Absolute Information
- Bearing Only SLAM
- Closing large Loops (Hybrid Architecture)
Basic Principle of SLAM

Vehicle and Observation Model

\[
\begin{align*}
\dot{x} &= v_c \cdot \cos(\phi) - \frac{v_c}{L} (a \cdot \sin(\phi) + b \cdot \cos(\phi) \cdot \tan(\alpha)) \\
\dot{y} &= v_c \cdot \sin(\phi) + \frac{v_c}{L} (a \cdot \cos(\phi) - b \cdot \sin(\phi) \cdot \tan(\alpha)) \\
\dot{\phi} &= \frac{v_c}{L} \cdot \tan(\alpha)
\end{align*}
\]

\[
\begin{bmatrix}
\dot{r}_i \\
\dot{\alpha}_i
\end{bmatrix} = h(X_i, x_i, y_i) = \begin{bmatrix}
\sqrt{(x_i - x_i)^2 + (y_i - y_i)^2} \\
\arctan \left(\frac{y_i - y_i}{x_i - x_i} \right) - \phi + \frac{\pi}{2}
\end{bmatrix}
\]

or

\[
\begin{align*}
x_i + r_i \cdot \cos(\alpha_i + \frac{\pi}{2}) - x_i &= 0 \\
y_i + r_i \cdot \sin(\alpha_i + \frac{\pi}{2}) - y_i &= 0
\end{align*}
\]
Extensions to SLAM

\[X = \begin{bmatrix} X_v \\ X_L \end{bmatrix} \]

\[X_v = \begin{bmatrix} x \\ y \\ \phi \end{bmatrix}, \quad X_L = \begin{bmatrix} x_i \\ y_i \\ ... \\ x_W \\ y_W \end{bmatrix} \]

- The computational requirements for each update will be proportional to \mathbf{V}.

\[x_v(k+1) = f(x_v(k)) \]
\[x_v(k+1) = x_v(k) \]

\[J_1 \in \mathbb{R}^{1 \times 3}, \quad \mathbf{Q} \in \mathbb{R}^{3 \times 3}, \quad I \in \mathbb{R}^{3 \times 3} \]

\[\frac{\partial F}{\partial X} = \begin{bmatrix} \frac{\partial f}{\partial x_v} & \mathbf{Q} \\ \mathbf{Q}^T & I \end{bmatrix} = \begin{bmatrix} J_1 & \mathbf{Q} \\ \mathbf{Q}^T & I \end{bmatrix} \]

In a large Environment:

Expensive!
Compressed Filter (CEKF)

- **Key Concept:**
 - When the vehicle navigates in a local area observing a group of features, the information gained is a function of only the observed features.
 - This information can be saved and then transferred in one iteration to the rest of the map.
- **Importance of the Compressed Algorithm**
 - Constant Computational Requirements
 - Independent of the total number of features in the global map
 - Full use of High Frequency sensors

CEKF

- The computational cost of the SLAM will now be proportional to $N_a \times N_a$ (landmarks in the local area)
- Full update is only required when the vehicle leaves the local Area A.

Eduardo Nebot
SLAM with land Vehicles
Compressed filter operation

- **External Estimator**
- **Global updates**: low frequency full EKF update.

Internal estimator (predictions and observations) at high frequency. Estimator running on a reduced system.

Map Management

- Active landmark
- Passive landmark
- Active sectors
- Hysteresis region
Relative Landmark Representation

Normalized covariance matrix image. Absolute Representation

[Diagram of covariance matrix image]

Normalized covariance matrix image. Relative Representation

[Diagram of covariance matrix image]

Sub-optimal Solutions: De-correlation Algorithms

- In the general case it is possible to de-correlate the covariance submatrices corresponding to two groups of states, Xa and Xb.

\[
P_1 = \begin{bmatrix} A & D & E \\ D^T & B & F \\ E^T & F^T & C \end{bmatrix} \quad A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{m \times n}
\]

\[
P_2 = \begin{bmatrix} A + \alpha \bar{E} & \bar{B} & \bar{F} \\ \bar{E} & \bar{F} \end{bmatrix} \quad P_2 \leq P_1
\]

Eduardo Nebot

SLAM with land Vehicles
De-correlation Procedure

$P = \begin{bmatrix} \alpha & C \\ C^T & \beta \end{bmatrix} = \begin{bmatrix} a+\hat{a} & 0 \\ 0 & \beta+\hat{\beta} \end{bmatrix}$

$\hat{a}, \hat{\beta} \sim \tau = \begin{bmatrix} \hat{a} & -C \\ -C^T & \hat{\beta} \end{bmatrix} \geq 0$

$\alpha_i, \alpha_j = \frac{\sum x_{i,j} | k_{i,j} |}{\sum | k_{i,j} |}, i = j

\hat{\beta}_{i,j} = \frac{\sum x_{i,j} | k_{i,j} |}{\sum | k_{i,j} |}, i = j

$\kappa_{i,j,k} = \kappa_{k,j,i} = 1$

$\hat{a}_{i,j} = \sum_{k,j} | k_{i,j} | \quad \hat{\beta}_{i,j} = \sum_{k,j} | k_{i,j} |$

Selection of Passive and Active States

- Active base landmarks
- Active relative landmarks.
- Passive close relative landmarks.
- Passive far relative landmarks.

Eduardo Nebot
SLAM with land Vehicles
Decorrelation Matrices

Reduced Covariance Matrix
Experimental results

Compressed / Simplifications
Difference in position estimation

Difference in orientation estimation
Outdoor Environment

Eduardo Nebot SLAM with land Vehicles

SLAM Results

Eduardo Nebot SLAM with land Vehicles
The aim was to apply monocular video as an external sensor into a simultaneous localization & mapping application. This approach could be so that the camera is a stand-alone external sensor or fused with multiple external sensors.

Modelling the Camera

- Modelled as a calibrated pin-hole camera.

\[
\begin{align*}
\alpha_i &= f_v \tan \phi_i - \tan \left(y_i - y_L \right) \left(x_i - x_L \right) + C_v \\
v_i &= \frac{f_v z_i}{\sqrt{(x_i - x_L)^2 + (y_i - y_L)^2} \cos \beta - \tan \left(y_i - y_L \right) \left(x_i - x_L \right)} + C_v
\end{align*}
\]

- Acts as a bearing-only sensor
Data Association within Pairings

- Without *a priori* information about the landmarks and features in question, image techniques and trigonometry are used to verify the two observations are indeed the same landmark.

- The basis for pairing observations are based that:
 - The estimate of the two lies within view of both observations
 - Are separated in both time and distance
 - Their image patches match by 95% (using Correlation Test)

- Verification of a pairing is performed by a third observation that matches the same criterion as above, as well as performing a χ^2 test from the estimate of the pairing.

Data Association with Known Landmarks

- The handy aspects about the EKF, is that it provides enough information to determine where a landmarks should be seen, through the observation model and the use of validation tests.

- The use of the Mahalanobis distance, or χ^2 test, utilizes the estimated innovation covariance, derived from the EKF. This provides us with a region in which a valid observation can be made

\[
\chi^2 \geq v^T S^{-1} v
\]

- In this case, where we are dealing with a single compatibility of landmark-to-observation for 2 dof. observation, a χ^2 value of 7.38 is appropriate for a 95% confidence
Projecting onto the image

- The χ^2 can be rewritten as the boundary equation for the ellipse it represents, and then used as the dimensions of a search window.

$$\chi^2 \geq v^T S^{-1} v$$

$$\downarrow$$

$$\chi^2 \geq \frac{1}{\det S} \left(S_{22} \Delta u^2 - (S_{12} + S_{21}) \Delta u \Delta v + S_{11} \Delta v^2 \right)$$

Test Environment - Outdoors
Results
• The red line indicates the path from the SLAM algorithm.
• The blue line is the recorded differential GPS path.
Incorporating Absolute Information

- In many cases absolute information is available with different levels of accuracy
 - GPS
 - Landmarks univocally detected at known positions

• Strong correction are possible due to large innovation (long periods with relative information)

• Innovation may not be large but strong updates in the covariance may introduce numerical problems

• A new absolute observation is treated as L observations of quality R/L.
Closing Large Loops: Data Association Problems

Hybrid Architecture

Data Association ERROR

CEKF

Eduardo Nebot

SLAM with land Vehicles
Bayesian Estimation in Navigation

- The Localization Problem with Particle Filters

\[
p(x_{k|k} \mid m, Z^k, U^k, x_0) = \int p(z_k \mid m, x_{k|k}) \int p(x_{k|k} \mid x_{k-1|k}, u^k) p(x_{k-1|k} \mid m, Z^{k-1}, U^{k-1}, x_0) dx_{k-1|k}
\]

- Is possible to develop an algorithm that resolve the localization problem with:
 - Range and Bearing Information
 - Bearing Only Information
 - Range Only Information

Eduardo Nebot

Advantages of Particle Filters

- The localisation problem can be solved without accurate initial vehicle position
- Natural solutions to data association
- The computational issues can be addressed
 - It can adapt to actual computational resources by adjusting the number of particles
 - It can be made very efficient with appropriate distribution of particles

Eduardo Nebot
CEKF Aided by the Particle Filter

• The basic idea:
 – At a certain time the SLAM algorithm will have and association failure. This may be the case when closing a large loop.
 – At this point, we have the actual mean and deviation of the vehicle states (given by the SLAM algorithm).
 – With the actual map we build an uncorrelated map.
 – A particle filter used this information to resolve the position of the rover.

Aiding CEKF

• Implementation Issues
 – Construct an uncorrelated map
 – Algorithm efficiency
 • Obtain a reduced Map
 • Intelligent initialization
Constructing a uncorrelated map

• **Uncorrelated map obtained from a SLAM:**
 – The map is represented in a local frame centered in the area of interest.
 – For this, two beacons can form a base and the rest are referenced to this base.
 – For example numerically...

\[
\begin{bmatrix}
1 & 0.99 & 0.99 \\
0.99 & 1 & 0.99 \\
0.99 & 0.99 & 1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
0.0067 & -0.0033 & -0.0033 \\
-0.0033 & 0.0067 & -0.0033 \\
-0.0033 & -0.0033 & 0.0067
\end{bmatrix}
\]

Eduardo Nebot

SLAM with land Vehicles
Improving the Algorithm Efficiency

This is done in two steps:

– First: select only the “visible beacons” of the entire map taking into account the uncertainties present.

– Fine tuning may discard some landmarks that are known with large uncertainty.

Initialization

– A uniform distribution covering all the area will generate a large number of particles in places with very low probability.

– If we have a set of observations from a laser frame and all the possible beacons that the vehicle can “see”, the sensor can only be over a helical center at each beacon at a distance given by the observation \(r, \theta \), parameterized in \(\tau \).

– This initialization selectively place the particles close to the possible hypothesis.
Location of the particles

\[r = \sqrt{(x-x_0)^2 + (y-y_0)^2} \]
\[\phi = \arctan \left(\frac{y-y_0}{x-x_0} \right) + \frac{\pi}{2} \]

\[C = \bigcup_{i=1}^{N} C_i \]

\[
\begin{align*}
C = & \left\{ (x, y, \phi) \right\} \\
& | \begin{array}{l}
x = x_1 \Rightarrow x + r \cos(\phi) \\
y = y_1 \Rightarrow y + r \sin(\phi) \\
\phi = \phi \Rightarrow \phi - \frac{\pi}{2} \\
r \in [0, 2\pi]
\end{array} \right\}
\]

Initialization with Range and Bearing

Eduardo Nebot

SLAM with land Vehicles
Resampling stage

Particles after resampling

Experimental Results

Eduardo Nebot

SLAM with land Vehicles
Experimental Results

Eduardo Nebot

SLAM with land Vehicles