Learning Effects of Robot Actions using Temporal Associations

Paul R. Cohen, Charles Sutton, and Brendan Burns
Computer Science Building
University of Massachusetts
Amherst, MA 01003
{cohen,casutton,bburns}@cs.umass.edu

Abstract

Agents need to know the effects of their actions. Strong associations between actions and effects can be found by counting how often they co-occur. We present an algorithm that learns temporal patterns expressed as fluents, propositions with temporal extent. The fluent-learning algorithm is hierarchical and unsupervised. It works by maintaining co-occurrence statistics on pairs of fluents. In experiments on a mobile robot, the fluent-learning algorithm found temporal associations that correspond to effects of the robot’s actions.

1. Introduction

Temporal associations are useful things. Embedded agents are particularly concerned with associations among their activities: for example, when one moves forward, things get closer; when a robot closes its gripper, it may find itself holding an object. Learning such associations without supervision is especially desirable, so humans do not need to decide which associations are important, and so agents can respond to changes in the environment simply by learning different patterns.

We express temporal patterns using fluents [7]. A fluent is a proposition with temporal extent. For example, “drinking-coffee” can be defined as a fluent that is true whenever I am drinking coffee. This fluent can be represented as a binary time series x, where x_t is 1 if and only if I am drinking coffee at time t.

FLUENT-LEARNING [3] is an unsupervised algorithm that finds associations between fluents, that is, it finds patterns in multivariate time series of binary variables. We apply FLUENT-LEARNING to learn patterns in the observations and actions of a mobile robot. Many of the patterns correspond to effects of the robot’s actions, for example, moving forward often leads to change in the front sonar.

The method is statistical: For a possible association between A and B, the algorithm maintains a contingency table that measures how much the presence of A affects the frequency of B. Since we use Allen’s [1] interval calculus, the learned patterns are both hierarchical and propositional. In the first section, we describe the Allen temporal relations and how we use contingency tables to judge whether a candidate pattern is statistically significant. Then, we describe the FLUENT-LEARNING algorithm that constructs these contingency tables. Third, we briefly describe how fluents correspond to operator models, that is, effects and initial conditions of actions. Fourth, we report fluents learned from the experiences of a mobile robot. Finally, we discuss related and future work.

2. Fluents and Temporal Relationships

Fluents have beginnings and ends. During the time in which a fluent holds, we say that it is open. Allen [1] gave a logic for relationships between the beginnings and ends of fluents. We use a nearly identical set of relationships:

- $SBEB(A,B)$ A starts before B, ends before B; Allen’s “overlap”
- $SWEB(A,B)$ B starts with A, ends before A; Allen’s “starts”
- $SAEW(A,B)$ B starts after A, ends with A; Allen’s “finishes”
- $SAEB(A,B)$ B starts after A, ends before A; Allen’s “during”
- $SWEW(A,B)$ B starts with A, ends with A; Allen’s “equal”
- $ES(A,B)$ B starts after A ends; amalgamating Allen’s “meets” and “before”

Although a proper subset of Allen’s relations, this list is exhaustive: any two fluents are in exactly one of these relations.

A composite fluent is a temporal relationship between fluents, written $\rho(A, B)$, where A and B are fluents, and
\(\rho \) is one of the six relationships above. The relationship is itself a fluent that begins with its first constituent and ends with its second constituent.

For example, suppose the robot begins pushing an object and then stalls, diagrammed like this:

- touch
- push
- stall

Three temporal relationships are displayed: SWEB\((\text{touch,push})\), SAEW\((\text{touch, stall})\) and ES\((\text{push, stall})\). But there are six other ways to describe this situation using composite fluents, e.g., SAEW\((\text{stall,SWEB(\text{touch,push})})\) says, “the relationship between touch and push begins before and ends with their relationship with stall.”

Let \(\rho \in \{ \text{SBEB, SWEB, SAEW, SWEW, ES}, \} \), and let \(P \) be a proposition (e.g., MOVING-FORWARD). Composite fluents have the form:

\[
F \leftarrow P \text{ or } CF
\]
\[
CF \leftarrow \rho(F, F)
\]

That is, a fluent \(F \) may be a proposition or a temporal relationship between fluents. Propositions are also called base fluents, to distinguish them from composite fluents.

A significant composite fluent is a statistically significant temporal relationship between fluents. That is, we will accept \(\rho(A,B) \) as a pattern if and only if the constituent fluents are statistically associated, if they “go together.” We can interpret a significant composite fluent \(\rho(A,B) \) as “When I see A, I tend to see a B such that \(\rho(A,B) \).”

For example, suppose we are considering the composite fluent ES(coffee,jitters), that is, jitters begin after the end of having coffee. Four frequencies are relevant:

<table>
<thead>
<tr>
<th></th>
<th>jitters</th>
<th>no-jitters</th>
</tr>
</thead>
<tbody>
<tr>
<td>coffee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>not-coffee</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Here \(a \) is the number of “coffee” fluents that are followed by “jitters”, \(b \) the number of “coffee” fluents that are not followed by “jitters”, \(c \) the number of “not-coffee” fluents that are followed by “jitters”, and \(d \) the number of “not-coffee” fluents that are not followed by “jitters.” A “not-coffee” fluent is defined simply to be true at a time step if and only if “coffee” is false.

For the composite fluent to be significant, certainly \(a \) should be bigger than \(b \), that is, I should get the jitters more often than not after drinking coffee. Suppose this is true, so \(a = kb \) for some \(k > 1 \). If the relative frequency of jitters is no different after I drink, say, orange juice, or talk on the phone (e.g., if \(c \approx kd \) then clearly there’s no special relationship between coffee and jitters. Thus, to accept ES(coffee,jitters), I’d want \(a = \frac{kb}{k} \) and \(c = \frac{md}{k} \), and \(k >> m \). In other words, whether we see coffee or not affects the distribution of when we see jitters.

To test the hypothesis that the start of the jitters fluent is independent of the end of the drinking coffee fluent, we use Cramer’s statistic, which for a \(2 \times 2 \) contingency table is defined as

\[
\phi_c = \sqrt{\frac{\chi^2}{N}},
\]

where \(N \) is the table total. Cramer’s statistic ranges between 0 and 1 and is interpreted like a correlation coefficient. If Cramer’s statistic exceeds a predefined threshold \(\phi_{crit} \), we say that the fluent is significant.

This statistic also serves to test hypotheses about the other five temporal relationships between fluents. Consider a composite fluent like SWEB(\text{brake,clutch}): When I approach a stop light in my standard transmission car, I start to brake, then depress the clutch to stop the car stalling; later I release the brake to start accelerating, and then I release the clutch. To see whether this fluent—SWEB(\text{brake,clutch})—is statistically significant, we use a contingency table to test whether “clutch” is more likely to start when “brake” is open than when any other fluent is open:

<table>
<thead>
<tr>
<th></th>
<th>clutter</th>
<th>non-clutter</th>
</tr>
</thead>
<tbody>
<tr>
<td>brake</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>non-brake</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

where

- \(a \) is the number of times we see SWEB(\text{brake,clutch}),
- \(b \) is the number of times we see “brake” but not “clutch,” i.e., SWEB(\text{brake,B}) for any B that is not “clutch”
- \(c \) is the number of times we see “clutch” but not “brake,” i.e., SWEB(A,\text{clutch}) where A is not “brake”
- \(d \) is the number of times we see SWEB(A,B) where A is not “brake” and B is not “clutch”

Imagine some representative numbers here: Only rarely do I start something other than braking and then depress the clutch, so \(c \) is small. Only rarely do I start braking without depressing the clutch (otherwise the car would stall), so \(b \) is also small. Clearly, \(a \) is relatively large, and \(d \) bigger still, so the table has most of its frequencies on a diagonal, producing a significant statistic. This means that SWEB(\text{brake,clutch}) is a significant composite fluent.

There is a difference between the tables given for ES and SWEB: in the ES table, the rows are “coffee” and “not-coffee”, while in the SWEB table, the rows are “brake” and “anything but brake”. For example, suppose that fluents “morning news,” “eating grapefruit,” and “starting car” happen after I finish my coffee. These fluents count as three instances of “anything but coffee,” for they are three fluents that are not coffee, but they are subsumed by only one
FLUENT-LEARNING(data)
 n ← table to record number of occurrences of each fluent, initially empty
 I ← table to record intervals during which each fluent is open, initially empty
 for t from 0 to length(data)
 fluents ← NEWLY-CLOSED-FLUENTS(t)
 for each f in fluents
 increment n_f
 push (start (f), end (f)) onto I_f
 if f is now significant
 add to list of significant fluents
 return list of significant fluents

NEWLY-CLOSED-FLUENTS(t)
 open ← list of base fluents that end at time t
 closed ← empty list
 for each fluent f in open
 for each fluent g that ends within the short-term memory
 ρ ← the temporal relation between f and g
 if ρ(f, g) is significant
 push ρ(f, g) onto open
 else push ρ(f, g) onto closed
 push f onto closed
 return closed

Figure 1. The FLUENT-LEARNING algorithm

“not-coffee” fluent, which persists until the next time I have coffee. The choice of which counting method to use is subtle, and we do not understand it fully. In the results here, ES and SAEB use the not-A counting method, while the other four relations use the anything-but method.

However we count, the hypothesis test allows us to find rare patterns: I might not drive my car very often, and so I rarely use the brake, but when I do, I always depress the clutch. Also, we avoid patterns that involve fluents that occur frequently in any context: for example, every time I open the refrigerator, I am still breathing.

We have described the fluent relations and how contingency tables are used to decide if fluents are significant. Next we describe how the contingency tables are constructed.

3. Fluent Learning Algorithm

The fluent learning algorithm incrementally constructs contingency tables for fluents. It processes a time series x of binary vectors. Each vector x_i has one boolean value for each base fluent f—for example, “moving-forward” or “gripper-closed”—that indicates whether f is true at time t.

The idea is to record the number of occurrences of every fluent that occurs in the input. Since there is an enormous number of possible patterns, we reduce the number of patterns ρ(A,B) that we consider in two ways.

First, we require that A and B occur within a short-term memory, that is, a sliding window over the time series which records when fluents start and end. A time step on which no fluent starts or ends does not occupy space in memory. For example, the fluent given in Section 2 requires a short-term memory of length 3: one time step when “touch” and “push” start, one when “push” ends and “stall” starts, and one when “stall” and “touch” end. The short-term memory is inspired by animal learning, because animals do not learn associations between events that occur far apart.

Second, we record information about a composite fluent ρ(A,B) only if A and B are either base fluents or are already significant. This heuristic assumes that significant fluents are likely to be important in the environment, and therefore fruitful for exploring further.

The fluent-learning algorithm is given formally in Figure 1. The algorithm records the intervals and counts of all fluents observed that meet the above two constraints. With this information, one can calculate the contingency tables described in the previous section. Note that when a base fluent ends, many composite fluents end as well; the procedure NEWLY-CLOSED-FLUENTS calculates them all by looking backward through the short-term memory.

FLUENT-LEARNING is unsupervised and multivariate. It is also incremental because new composite fluents become available for inclusion in other fluents as they become significant.

4. Fluents as Operator Models

Significant fluents can correspond to initial conditions and effects of an agent’s actions. For example, a significant fluent ES(move-forward,F) could be interpreted as “The action move-forward tends to result in F”.

Learning initial conditions is more difficult. If the initial condition is I, the action A, and the effect E, then a significant fluent ρ_1(p_2(I,A),E) might be interpreted to mean that in the presence of I, action A leads to E. But composite fluents can be significant when their constituents are not. In this example, if all actions may be attempted in all states, p_2(I,A) is unlikely to be significant, but the composite fluent ρ_1(p_2(I,A),E) is significant. Recall that FLUENT-LEARNING does not keep statistics on a composite fluent unless both of its constituents are already significant. Because of this, FLUENT-LEARNING will never learn the fluent ρ_1(p_2(I,A),E), for its constituent is not significant.
The problem is that planning operators such as \(\rho_1(\rho_2(I,A),E) \) may be significant when none of their pairwise constituents are; essentially, they are ternary relations between initial condition, action, and effect. This would not be a problem if FLUENT-LEARNING worked with three-way tables instead of bivariate relationships. One way to achieve the effect of learning three-way relations, without paying a prohibitive price in combinatorics, is to allow a fluent of the form \(\rho(B,A) \), where \(B \) is a base fluent and \(A \) an action, to participate in higher-level fluents. That is, in the \textbf{if} statement in \textsc{Newly-Closed-Fluents} (Figure 1), we would expand \(\rho(B,A) \) as if it were significant.

5. Experiments

We tested FLUENT-LEARNING on data generated using a Pioneer II robot in a walled playpen. A small styrofoam block was in front of the robot. The robot could perform four actions: move forward, move backward, open gripper and close gripper. At each time step its perceptual system output six propositions about the environment: four about its relative location measured using sonar—closer front, farther front, closer rear and farther rear—and two about the gripper—object in gripper, meaning that an object was between the gripper paddles, and holding object, meaning that the gripper was closed on an object.

In other experiments, we also included the negations of these base fluents, such as “not-holding-object,” but in this experiment we did not, because composite fluents that contain negations tend to be harder for humans to interpret.

The data contained 2707 binary vectors of length 10: six elements recorded the sensory propositions, and four recorded whether each action had been initiated. The robot initiated actions on 604 of the time steps. Of the 1024 possible binary vectors, some combinations were impossible, for example moving forward and moving backward at the same time. In all, 36 unique states occurred in the data. We hypothesized that many significant fluents would correspond to the effects and initial conditions of the robot’s actions.

At the confidence level \(\phi_{crit} = 0.8 \), the algorithm found 61 significant fluents. By hand, we classified these into three categories: good, marginal, and bad. Good fluents were those that in our judgment reflected dynamics of the environment, or the effects of robot actions, for example, \(\text{ES}(\text{move-forward}, \text{closer-front}) \), shown in Figure 2.

Some significant fluents indicate initial conditions of actions. For example, the fluent \(\text{SAEB}(\text{object-in-gripper}, \text{close-gripper}, \text{holding-object}) \), displayed in Figure 3, could be interpreted, “During an object-in-gripper fluent that contains a close-gripper fluent, one tends to see a holding-object fluent.” This pattern leaves the order of “close-gripper” and “holding-object” unspecified; we have diagrammed the relation in the order found in the data.

![Figure 2. A significant fluent returned by the algorithm](image)

![Figure 3. A learned fluent that indicates an action’s initial condition](image)

The constituent fluent \(\text{SAEB}(\text{object-in-gripper}, \text{close-gripper}) \) was not significant; only about half the time that an object was between the gripper paddles did the robot happen to close the gripper.

Marginal fluents were generally those that combined two good fluents inappropriately. For example, consider the fluent in Figure 4. Certainly moving backward while an object is between the gripper paddles will lead to things being closer in the rear, but that is only because moving backward \textit{always} leads to closer rear. Marginal fluents are thus not spurious; they reflect regularities in the environment, but they do not correspond to accurate operator models. An automatic pruning procedure could probably remove such a fluent, given that \(\text{ES}(\text{move-backward}, \text{closer-rear}) \) is already significant.

Bad fluents were those that seemed completely implausible. An example of a bad fluent the algorithm found is given in Figure 5. While the association between \(\text{SAEB}(\text{object-in-gripper}, \text{move-backward}) \) and closer-rear is significant, it does not correspond to any \textit{causal} rule in the environment.

![Figure 4. A marginal fluent returned by the algorithm](image)

![Figure 5. An example of a bad fluent](image)
Fluent learning works for multivariate time series in which all the variables are binary. It does not attend to the durations of fluents, only the temporal relationships between open and close events. This is an advantage in domains where the same episode can take different amounts of time, and a disadvantage in domains where duration matters. The algorithm uses hypothesis testing; thus, we accept a fluent \(\rho(A,B) \) not because of the absolute number of times \(\rho(A,B) \) occurs, but because of how much A affects the observed distribution of B.

Because it is a statistical technique, fluent learning finds common patterns, not all patterns; it is easily biased to find more or fewer patterns by adjusting the threshold value of the statistic and varying the size of the short-term memory.

We applied the algorithm to data from a mobile robot to find effects and initial conditions of its actions. In future work, we hope to use these as planning operators for robot control. Also, it would be intriguing for an algorithm to construct experiments to determine whether a significant fluent in fact reflects a causal relation. **FLUENT-LEARNING**
does not learn causal models—causal induction is computationally much more challenging, and our approach to learning causal rules is not to induce what we can from observational data but rather to use fluents as hypotheses about causal rules to be learned by the robot in true experiments.

References