Abbreviations

AMD.. Advanced Micro Devices
ATM.. Arc Transversal Median
CAD.. Computer Aided Design
CCD.. Charge Coupled Device
COG.. Centre Of Gravity
COM.. Communications
I/O.. Input / Output
JIRA... Japanese Industrial Robot Association
LSA.. Logical Sensor / Actuator
NIDAQ.. National Instruments Digital Acquisition
PC.. Personal Computer
PCL.. Peripheral Component Interconnect
RGB... Red Green Blue
RMA... Royal Military Academy
PII.. Intel Pentium 2
SDRAM.. Synchronous Dynamic Random Access Memory
SMPA... Sense Model Plan Act
US.. Ultrasonic Sensor
VISCA.. Video System Control Architecture
XOR.. Exclusive Or
List of figures

Figure 1: Presentation of the robot - 2 -
Figure 2: Matlab graph of the points reachable within 6 steps - 3 -
Figure 3: Cable diagram - 4 -
Figure 4: The robot before and after the project - 5 -
Figure 5: Sketch of SMPA control architecture - 6 -
Figure 6: Sketch of the blackboard control architecture - 7 -
Figure 7: Sketch of subsumption control architecture - 7 -
Figure 8: Used control architecture - 9 -
Figure 9: Hue colour space - 16 -
Figure 10: The Sony EVI-D31 camera - 17 -
Figure 11: Pan and tilt range - 17 -
Figure 12: Camera calibration - 19 -
Figure 13: Error made with the camera distance measurement - 19 -
Figure 14: Ultrasonic distance measurement - 21 -
Figure 15: Fresnel and Fraunhofer propagation stages - 21 -
Figure 16: Wave pattern for the Polaroid US6500 Ultrasonic Sensor - 22 -
Figure 17: Error made by choosing the middle point as the object position - 22 -
Figure 18: Errors made by choosing the middle point as the object position - 23 -
Figure 19: Triangulation of ultrasonic sensors - 23 -
Figure 20: Error when using the triangulation method - 25 -
Figure 21: Stable and unstable intersections - 25 -
Figure 22: Multiple echoes when using a spherical object - 27 -
Figure 23: Polaroid US6500 control board - 28 -
Figure 24: US 6500 Control sequence in single-echo mode - 28 -
Figure 25: Angular range of the ultrasonic sensors (to scale) - 30 -
Figure 26: Flow chart of Ultrasonic distance and angle measurement - 31 -
Figure 27: Sensors measuring different objects - 32 -
Figure 28: Robot angle convention - 33 -
Figure 29: Error on the ultrasonic distance measurement - 34 -
Figure 30: Error on the distance measurement as a function of the standard deviation - 34 -
Figure 31: Error on the angle measurement as a function of the real angle - 35 -
Figure 32: Error on the angle measurement as a function of the standard deviation - 36 -
Figure 33: Robot turning left - 37 -
Figure 34: Robot turning left - 37 -
Figure 35: Robot moving forward - 38 -
Figure 36: Robot moving backward - 38 -
Figure 37: Decision fusion - 40 -
Figure 38: Radar stations working as complementary sensors - 41 -
Figure 39: Radar stations working as competitive sensors - 42 -
Figure 40: Time measurement using two clocks - 43 -
Figure 41: Time measurement using three clocks - 43 -
Figure 42: Fusion of 71-dimensional readings - 44 -
Figure 43: Input and output for the sensor fusion module - 47 -
Figure 44: Membership functions for the measured distance - 48 -
Figure 45: Membership functions for the standard deviation on the measured distance - 48 -
Figure 46: Membership functions for the measured angle - 49 -
Figure 47: Membership functions for the standard deviation on the measured angle - 49 -
Figure 48: Membership functions for the output variables - 50 -
Figure 49: Input set for an ultrasonic angle measurement - 52 -
Figure 50: Calculating the degree of firing - 53 -
Figure 51: Fuzzy set for one rule - 54 -
Figure 52: Weight function used for determining the weight coefficient of the ultrasonic sensor - 55 -
Figure 53: Path calculated with a recursive algorithm - 60 -
List of figures

Figure 54: Potential Field Navigation - 61 -
Figure 55: Local minimum on a map with one obstacle and one target - 61 -
Figure 56: Two reachable points are always more than 2cm apart - 65 -
Figure 57: Testing environment - 68 -
Figure 58: Charts of the potential field as the robot is advancing in the environment - 69 -
Figure 59: Potential field after completing a run - 70 -
Figure 60: Robot making a large detour before reaching its target - 70 -
Figure 61: Tri-aural sensor array - 73 -
Figure 62: Power Spectral Density diagram and Envelope – function - 74 -
Figure 63: Snapshot of the robot control program - 76 -
References

[13] “An Introduction to the Kalman Filter” by Greg Welch and Gary Bishop, University of North Carolina, Department of Computer Science, Chapel Hill, USA, 1996

[15] “Path Planning Using Laplace’s Equation” by C.I. Connolly, J.B. Burns and R. Weiss, University of Massachusetts, Computer and Information Science Department, Amherst, USA, February 1994

[16] “Generating Sonar Maps in Highly Specular Environments” by Andrew Howard and Les Kitchen, University of Melbourne, Department of Computer Science, Victoria, Australia, 1992
References

[18] “Deadlock-Free Motion Planning using the Laplace Potential Field” by Keisuke SATO, University of Tokyo, Tokyo, Japan, 1988

[22] “Ultrasonic Mobile Robot Perception using Neural Network Techniques” by Jie Chen, University of Ghent, Department of Electronics and Information Systems, Gent, Belgium, 1996

[23] “Véhicule autonome guide” by Bey Temsamani Abdellatif, Université de Mons – Hainaut, Mons, Belgium, 1996
