Papers in peer-reviewed journals:
1. A. Dmytryshyn, V. Futorny, B. Kågström, L. Klimenko, V.V. Sergeichuk, Change of the congruence canonical form of 2-by-2 and 3-by-3 matrices under perturbations and bundles of matrices under congruence,
Linear Algebra Appl., 469 (2015) 305-334. [bib] [pdf]
2. A. Dmytryshyn, B. Kågström, Orbit closure hierarchies of skew-symmetric matrix pencils,
SIAM J. Matrix Anal. Appl., 35(4) (2014) 1429-1443. [bib] [pdf]
3. A. Dmytryshyn, B. Kågström, V.V. Sergeichuk, Symmetric matrix pencils: codimension counts and the solution of a pair of matrix equations,
Electron. J. Linear Algebra, 27 (2014) 1-18. [bib] [pdf]
4. A. Dmytryshyn, V. Futorny, V.V. Sergeichuk, Miniversal deformations of matrices under *congruence and reducing transformations,
Linear Algebra Appl., 446 (2014) 388-420. [bib] [pdf]
5. A. Dmytryshyn, B. Kågström, V.V. Sergeichuk, Skew-symmetric matrix pencils: codimension counts and the solution of a pair of matrix equations,
Linear Algebra Appl., 438 (2013) 3375-3396. [bib] [pdf of the preprint]
6. A.R. Dmytryshyn, V. Futorny, V.V. Sergeichuk, Miniversal Deformations of Matrices of Bilinear Forms,
Linear Algebra Appl., 436 (2012) 2670-2700, arXiv:1004.3584v3. [bib] [pdf]
7. A.R. Dmytryshyn, Miniversal deformations and Darboux's theorem,
Bulletin of University of Kyiv, Series: Physics & Mathematics, 4 (2010) 20-22. [bib] [pdf]
8. G. Belitskii, A.R. Dmytryshyn, R. Lipyanski, V.V. Sergeichuk, A. Tsurkov, Problems of classifying associative or Lie algebras over a field of characteristic not 2 and finite metabelian groups are wild,
Electron. J. Linear Algebra, 18 (2009) 516-529. [bib] [pdf]
Technical reports & preprints:
9. A. Dmytryshyn, S. Johansson, B. Kågström, Codimension computations of congruence orbits of matrices, symmetric and skew-symmetric matrix pencils using Matlab,
Report UMINF 13.18, Department of Computing Science, Umeå University, 2013. [bib] [pdf]
10. A. Dmytryshyn, Miniversal deformations of pairs of skew-symmetric forms, arXiv:1104.2492v1. [pdf]
11. A. Dmytryshyn, Miniversal deformations of pairs of symmetric forms, arXiv:1104.2530v1. [pdf]
Theses:
12. A. Dmytryshyn, Skew-Symmetric Matrix Pencils: Stratification Theory and Tools,
Licentiate Thesis, Department of Computing Science, Umeå University, Report UMINF 14.05, 2014. [pdf]
13. A. Dmytryshyn, A Strong Tits Alternative,
Master Thesis, University of Bordeaux 1, 2011. [pdf]
14. A. Dmytryshyn, Miniversal deformations of pairs of skew-symmetric forms,
Master Thesis, Taras Shevchenko University of Kiev, 2010, (based on #9 from this list). [pdf]