Parallel solution of banded and block bidiagonal linear systems

Carl Christian Kjelgaard Mikkelsen Bo Kågström

Department of Mathematic and Information Technology
Umeå University

PARA-2010
Reykjavik, Iceland
June 8th, 2010
Outline of Topics

Banded systems
- Motivation
- Diagonally dominant systems
- General banded systems

Cyclic reduction of BBD systems
- Motivation
- Serial code
- Parallel code
Motivation

Why bother?

- Naturally occurring.
Motivation

Why bother?

- Naturally occurring.
- Reordering of sparse matrices.
Motivation

Why bother?

- Naturally occurring.
- Reordering of sparse matrices.
- Banded preconditioners.
Outline
Banded systems
Cyclic reduction of BBD systems
Motivation
Diagonally dominant systems
General banded systems
Outline

Banded systems
Cyclic reduction of BBD systems

Motivation
Diagonally dominant systems
General banded systems

Parallel solution of banded and block bidiagonal linear systems
Outline
Banded systems
Motivation
Diagonally dominant systems
Cyclic reduction of BBD systems
General banded systems

Parallel solution of banded and block bidiagonal linear systems
The half bandwidth k of the matrix satisfies

$$|i - j| > k \Rightarrow a_{ij} = 0.$$
Notation

- The half bandwidth k of the matrix satisfies
 \[|i - j| > k \implies a_{ij} = 0. \]

- A matrix A is (strictly) diagonally dominant by rows, if
 \[\forall i : \sum_{j \neq i} |a_{ij}| < |a_{ii}|. \]
Notation

- The half bandwidth \(k \) of the matrix satisfies
 \[
 |i - j| > k \quad \Rightarrow \quad a_{ij} = 0.
 \]

- A matrix \(A \) is (strictly) diagonally dominant by rows, if
 \[
 \forall \; i : \sum_{j \neq i} |a_{ij}| < |a_{ii}|.
 \]

- The dominance factor \(\epsilon \) is defined by
 \[
 \epsilon = \max_i \left\{ \frac{\sum_{j \neq i} |a_{ij}|}{|a_{ii}|} \right\} \in [0, 1).
 \]
Theorem (Mikkelsen, 2010)

Let A be a matrix which is strictly diagonally dominant by rows, let S be the Schur complement for the ScaLAPACK matrix, and let D be the main block diagonal of S. Let

$$\mu = qk$$

denote dimension of the individual partitions. Then

$$\|S - D\|_\infty \leq 2\epsilon^{1+q}\|A\|_\infty$$

where ϵ is the dominance factor.
The origins of the off diagonal blocks
The central estimate

\[\epsilon^q = n = qk \]

Figure: The $\| \cdot \|_\infty$ norm of the blue k by k blocks decay exponentially.
Overview

- Parallelism is achieved by reordering.
Overview

- Parallelism is achieved by reordering.
- The Schur complement is block bidiagonal.
Overview

- Parallelism is achieved by reordering.
- The Schur complement is block bidiagonal.
- The Schur complement is factored using cyclic reduction.
Overview

- Parallelism is achieved by reordering.
- The Schur complement is block bidiagonal.
- The Schur complement is factored using cyclic reduction.
- The routines are designed for narrow banded matrices.
Why bother?

- Central to ScaLAPACKs banded solvers.
Why bother?

- Central to ScaLAPACK's banded solvers.
- Block bidiagonal (BBD) systems are interesting on their own.
Why bother?

- Central to ScaLAPACKs banded solvers.
- Block bidiagonal (BBD) systems are interesting on their own.
- The LU factorization may fail, where the QR factorization succeeds.
Figure: Hand calculation versus computer implementation
Figure: Apply a block column permutation to the leaves
Figure: The recursion begins
Figure: We reach the leftmost leaf
Figure: QR factor the blue columns and ...
Figure: ... apply the orthonormal transformation to the red columns
Figure: Branch completed
Figure: QR factor the blue columns ...
Figure: ... apply the orthonormal transformation to the red columns
Figure: Branch completed
Figure: Identify data for transport
Figure: Move data upward
Figure: Transfer complete
Figure: QR factor the blue columns and ...
Figure: ... apply the orthogonal transformation to the red columns
Figure: Branch completed
Outline
Banded systems
Cyclic reduction of BBD systems

Motivation
Serial code
Parallel code

Figure: QR factor the blue columns ...
Figure: ... apply the orthogonal transformation to the red columns
Figure: Branch completed
Figure: Identify data for transport
Figure: Move data upward
Figure: Transfer complete
Figure: QR factor the blue columns ...
Figure: ... and we are done!
Figure: Tree completed
Figure: Permute rows 4 and 5
Figure: Permute columns 4 and 5
Figure: Permute rows 2 and 3
Figure: Permute columns 2 and 3
Outline

- **Banded systems**
 - Cyclic reduction of BBD systems

Motivation

- Serial code
- Parallel code

Example Diagram

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
```
Banded systems

Cyclic reduction of BBD systems

Motivation

Serial code

Parallel code

Mikkelsen, Kågström Parallel solution of banded and block bidiagonal linear systems
Outline
Banded systems
Cyclic reduction of BBD systems

Motivation
Serial code
Parallel code
Outline
Banded systems
Cyclic reduction of BBD systems

Motivation
Serial code
Parallel code

Parallel solution of banded and block bidiagonal linear systems
Mikkelsen, Kågström Parallel solution of banded and block bidiagonal linear systems
Current implementation

- Parallel solution of BBD systems using the QR factorization
Overview

Current implementation

- Parallel solution of BBD systems using the QR factorization
- Fortran 90
Overview

Current implementation

- Parallel solution of BBD systems using the QR factorization
- Fortran 90
- Zero interprocessor communication outside of ScaLAPACK.
Acknowledgements

Special thanks to

- HPC2N, Umeå, Sweden
 - Birgitte Brydsø
 - Lars Karlson
 - Meiyue Shao
Special thanks to

- HPC2N, Umeå, Sweden
 - Birgitte Brydsø
 - Lars Karlson
 - Meiyue Shao

- Universidad Jaume I de Castellón, Spain
 - Alfredo Remón
 - Enrique Quintana-Ortí
 - Gregorio Quintana-Ortí
Thank you for your attention!