Algorithms for Collective Communication

Design and Analysis of Parallel Algorithms
A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction to Parallel Computing, Chapter 4, 2003.
Outline

- One-to-all broadcast
- All-to-one reduction
- All-to-all broadcast
- All-to-all reduction
- All-reduce
- Prefix sum
- Scatter
- Gather
- All-to-all personalized
- Improved one-to-all broadcast
- Improved all-to-one reduction
- Improved all-reduce
Corresponding MPI functions

<table>
<thead>
<tr>
<th>Operation</th>
<th>MPI function[s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-to-all broadcast</td>
<td>MPI_Bcast</td>
</tr>
<tr>
<td>All-to-one reduction</td>
<td>MPI_Reduce</td>
</tr>
<tr>
<td>All-to-all broadcast</td>
<td>MPI_Allgather[v]</td>
</tr>
<tr>
<td>All-to-all reduction</td>
<td>MPI_Reduce_scatter[_block]</td>
</tr>
<tr>
<td>All-reduce</td>
<td>MPI_Allreduce</td>
</tr>
<tr>
<td>Prefix sum</td>
<td>MPI_Scan / MPI_Exscan</td>
</tr>
<tr>
<td>Scatter</td>
<td>MPI_Scatter[v]</td>
</tr>
<tr>
<td>Gather</td>
<td>MPI_Gather[v]</td>
</tr>
<tr>
<td>All-to-all personalized</td>
<td>MPI_Alltoall[v</td>
</tr>
</tbody>
</table>
Linear model of communication overhead

- Point-to-point message takes time $t_s + t_w m$

- t_s is the latency

- t_w is the per-word transfer time (inverse bandwidth)

- m is the message size in # words

- (Must use compatible units for m and t_w)
Contestion

- Assuming bi-directional links
- Each node can send and receive simultaneously
- Contention if link is used by more than one message
- k-way contention means $t_w \rightarrow t_w/k$
One-to-all broadcast

Input:
- The message M is stored locally on the root

Output:
- The message M is stored locally on all processes
One-to-all broadcast

Ring

Recursive doubling

Double the number of active processes in each step
One-to-all broadcast

Mesh

- Use ring algorithm on the root’s mesh row
- Use ring algorithm on all mesh columns in parallel
One-to-all broadcast

Hypercube

- Generalize mesh algorithm to d dimensions
One-to-all broadcast
Algorithm

The algorithms described above are identical on all three topologies

1: Assume that $p = 2^d$
2: $\text{mask} \leftarrow 2^d - 1$ (set all bits)
3: for $k = d - 1, d - 2, \ldots, 0$ do
4: $\text{mask} \leftarrow \text{mask} \bowtie 2^k$ (clear bit k)
5: if $\text{me AND mask} = 0$ then
6: (lower k bits of me are 0)
7: $\text{partner} \leftarrow \text{me} \bowtie 2^k$ (partner has opposite bit k)
8: if $\text{me AND } 2^k = 0$ then
9: Send M to partner
10: else
11: Receive M from partner
12: end if
13: end if
14: end for
One-to-all broadcast

The given algorithm is not general.

▶ What if $p \neq 2^d$?
 ▶ Set $d = \lceil \log_2 p \rceil$ and don’t communicate if partner $\geq p$

▶ What if the root is not process 0?
 ▶ Relabel the processes: $\text{me} \rightarrow \text{me XOR root}$
One-to-all broadcast

- Number of steps: $d = \log_2 p$

- Time per step: $t_s + t_w m$

- Total time: $(t_s + t_w m) \log_2 p$

In particular, note that broadcasting to p^2 processes is only twice as expensive as broadcasting to p processes ($\log_2 p^2 = 2 \log_2 p$)
All-to-one reduction

\[M := M_0 \oplus M_1 \oplus M_2 \oplus M_3 \]

Input:
- The \(p \) messages \(M_k \) for \(k = 0, 1, \ldots, p - 1 \)
- The message \(M_k \) is stored locally on process \(k \)
- An associative reduction operator \(\oplus \)
- E.g., \(\oplus \in \{ +, \times, \max, \min \} \)

Output:
- The “sum” \(M := M_0 \oplus M_1 \oplus \cdots \oplus M_{p-1} \) stored locally on the root
All-to-one reduction

Algorithm

- Analogous to all-to-one broadcast algorithm
- Analogous time (plus the time to compute $a \oplus b$)
- Reverse order of communications
- Reverse direction of communications
- Combine incoming message with local message using \ominus
All-to-all broadcast

Input:
- The p messages M_k for $k = 0, 1, \ldots, p - 1$
- The message M_k is stored locally on process k

Output:
- The p messages M_k for $k = 0, 1, \ldots, p - 1$ are stored locally on all processes
All-to-all broadcast

Ring

Step 1

Step 2

and so on...
All-to-all broadcast
Ring algorithm

1: left ← (me − 1) mod p
2: right ← (me + 1) mod p
3: result ← M_me
4: M ← result
5: for k = 1, 2, ..., p − 1 do
6: Send M to right
7: Receive M from left
8: result ← result ∪ M
9: end for

- The “send” is assumed to be non-blocking
- Lines 6–7 can be implemented via MPI_Sendrecv
All-to-all broadcast
Time of ring algorithm

- Number of steps: $p - 1$
- Time per step: $t_s + t_w m$
- Total time: $(p - 1)(t_s + t_w m)$
All-to-all broadcast

Mesh algorithm

The **mesh** algorithm is based on the **ring** algorithm:

- Apply the **ring** algorithm to all **mesh rows** in parallel

- Apply the **ring** algorithm to all **mesh columns** in parallel
All-to-all broadcast
Time of mesh algorithm

(Assuming a $\sqrt{p} \times \sqrt{p}$ mesh for simplicity)

- Apply the **ring** algorithm to all mesh rows in parallel
 - Number of steps: $\sqrt{p} - 1$
 - Time per step: $t_s + t_w m$
 - Total time: $(\sqrt{p} - 1)(t_s + t_w m)$

- Apply the **ring** algorithm to all mesh columns in parallel
 - Number of steps: $\sqrt{p} - 1$
 - Time per step: $t_s + t_w \sqrt{p} m$
 - Total time: $(\sqrt{p} - 1)(t_s + t_w \sqrt{p} m)$

- Total time: $2(\sqrt{p} - 1)t_s + (p - 1)t_w m$
All-to-all broadcast

Hypercube algorithm

The hypercube algorithm is also based on the ring algorithm:

- For each dimension d of the hypercube in sequence:
- Apply the ring algorithm to the 2^{d-1} links in the current dimension in parallel.

```
0 1 2 3
4 5 6 7
```
All-to-all broadcast

Time of hypercube algorithm

- Number of steps: \(d = \log_2 p \)

- Time for step \(k = 0, 1, \ldots, d - 1 \): \(t_s + t_w 2^k m \)

- Total time: \(\sum_{k=0}^{d-1} (t_s + t_w 2^k m) = t_s \log_2 p + t_w (p - 1) m \)
All-to-all broadcast

Summary

<table>
<thead>
<tr>
<th>Topology</th>
<th>t_s</th>
<th>t_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring</td>
<td>$p - 1$</td>
<td>$(p - 1)m$</td>
</tr>
<tr>
<td>Mesh</td>
<td>$2(\sqrt{p} - 1)$</td>
<td>$(p - 1)m$</td>
</tr>
<tr>
<td>Hypercube</td>
<td>$\log_2 p$</td>
<td>$(p - 1)m$</td>
</tr>
</tbody>
</table>

- Same transfer time (t_w term)
- But the number of messages differ
All-to-all reduction

\[
\begin{array}{cccc}
M_{0,3} & M_{1,3} & M_{2,3} & M_{3,3} \\
M_{0,2} & M_{1,2} & M_{2,2} & M_{3,2} \\
M_{0,1} & M_{1,1} & M_{2,1} & M_{3,1} \\
M_{0,0} & M_{1,0} & M_{2,0} & M_{3,0} \\
\end{array}
\]

\[
M_r := M_{0,r} \oplus M_{1,r} \oplus M_{2,r} \oplus M_{3,r}
\]

Input:
- The \(p^2 \) messages \(M_{r,k} \) for \(r, k = 0, 1, \ldots, p - 1 \)
- The message \(M_{r,k} \) is stored locally on process \(r \)
- An associative reduction operator \(\oplus \)

Output:
- The “sum” \(M_r := M_{0,r} \oplus M_{1,r} \oplus \cdots \oplus M_{p-1,r} \) stored locally on each process \(r \)
All-to-all reduction

Algorithm

- Analogous to all-to-all broadcast algorithm
- Analogous time (plus the time for computing $a \oplus b$)
- Reverse order of communications
- Reverse direction of communications
- Combine incoming message with part of local message using \oplus
All-reduce

\[
\begin{array}{cccccc}
 M_0 & M_1 & M_2 & M_3 & M \\
 \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc \\
\end{array}
\]

\[
M := M_0 \oplus M_1 \oplus M_2 \oplus M_3
\]

Input:
- The \(p \) messages \(M_k \) for \(k = 0, 1, \ldots, p - 1 \)
- The message \(M_k \) is stored locally on process \(k \)
- An associative reduction operator \(\oplus \)

Output:
- The “sum” \(M := M_0 \oplus M_1 \oplus \cdots \oplus M_{p-1} \) stored locally on all processes
All-reduce
Algorithm

- Analogous to all-to-all broadcast algorithm
- Combine incoming message with local message using \oplus
- Cheaper since the message size does not grow
- Total time: $(t_s + t_w m) \log_2 p$
Prefix sum

\[
\begin{array}{cccccccc}
M_0 & M_1 & M_2 & M_3 & M^{(0)} & M^{(1)} & M^{(2)} & M^{(3)} \\
\bigcirc & \bigcirc \\
\end{array}
\]

\[M^{(k)} := M_0 \oplus M_1 \oplus \cdots \oplus M_k\]

Input:
- The \(p \) messages \(M_k \) for \(k = 0, 1, \ldots, p-1 \)
- The message \(M_k \) is stored locally on process \(k \)
- An associative reduction operator \(\oplus \)

Output:
- The “sum” \(M^{(k)} := M_0 \oplus M_1 \oplus \cdots \oplus M_k \) stored locally on process \(k \) for all \(k \)
Prefix sum

Algorithm

- Analogous to all-reduce algorithm
- Analogous time
- Locally store only the corresponding partial sum
Scatter

Input:
- The p messages M_k for $k = 0, 1, \ldots, p - 1$ stored locally on the root

Output:
- The message M_k stored locally on process k for all k
Scatter
Algorithm

- Analogous to one-to-all broadcast algorithm

- Send half of the messages in the first step, send one quarter in the second step, and so on

- More expensive since several messages are sent in each step

- Total time: \(t_s \log_2 p + t_w(p - 1)m \)
Gather

Input:
- The p messages M_k for $k = 0, 1, \ldots, p - 1$
- The message M_k is stored locally on process k

Output:
- The p messages M_k stored locally on the root
Gather
Algorithm

- Analogous to scatter algorithm
- Analogous time
- Reverse the order of communications
- Reverse the direction of communications
All-to-all personalized

\[
\begin{matrix}
M_{0,3} & M_{1,3} & M_{2,3} & M_{3,3} \\
M_{0,2} & M_{1,2} & M_{2,2} & M_{3,2} \\
M_{0,1} & M_{1,1} & M_{2,1} & M_{3,1} \\
M_{0,0} & M_{1,0} & M_{2,0} & M_{3,0}
\end{matrix}
\quad
\begin{matrix}
M_{3,0} & M_{3,1} & M_{3,2} & M_{3,3} \\
M_{2,0} & M_{2,1} & M_{2,2} & M_{2,3} \\
M_{1,0} & M_{1,1} & M_{1,2} & M_{1,3} \\
M_{0,0} & M_{0,1} & M_{0,2} & M_{0,3}
\end{matrix}
\]

Input:
- The \(p^2 \) messages \(M_{r,k} \) for \(r, k = 0, 1, \ldots, p - 1 \)
- The message \(M_{r,k} \) is stored locally on process \(r \)

Output:
- The \(p \) messages \(M_{r,k} \) stored locally on process \(k \) for all \(k \)
The hypercube algorithm is not optimal with respect to communication volume (the lower bound is $t_w m(p - 1)$).
All-to-all personalized
An optimal (w.r.t. volume) hypercube algorithm

Idea:
- Let each pair of processes exchange messages directly

Time:
- $(p - 1)(t_s + t_w m)$

Q:
- In which order do we pair the processes?

A:
- In step k, let me exchange messages with me $\text{XOR } k$
- This can be done without contention!
All-to-all personalized
An optimal hypercube algorithm
All-to-all personalized
An optimal hypercube algorithm based on E-cube routing
All-to-all personalized
E-cube routing

- Routing from s to $t := s \text{XOR} k$ in step k

- The difference between s and t is

 $$s \text{XOR} t = s \text{XOR}(s \text{XOR} k) = k$$

- The number of links to traverse equals the number of 1’s in the binary representation of k (the so-called Hamming distance)

- E-cube routing: route through the links according to some fixed (arbitrary) ordering imposed on the dimensions
All-to-all personalized
E-cube routing

Why does E-cube routing work?

► Write

\[k = k_1 \text{ XOR } k_2 \text{ XOR } \cdots \text{ XOR } k_n \]

such that

► \(k_j \) has exactly one set bit

► \(k_i \not= k_j \) for all \(i \not= j \)

► Step \(i \):

\[r \mapsto r \text{ XOR } k_i \]

and hence uses the links in one dimension without congestion.

► After all \(n \) steps we have as desired:

\[r \mapsto r \text{ XOR } k_1 \text{ XOR } \cdots \text{ XOR } k_n = r \text{ XOR } k \]
All-to-all personalized
E-cube routing example

- Route from \(s = 100_2 \) to \(t = 001_2 = s \ XOR \ 101_2 \)

- Hamming distance (i.e., \# links): 2

- Write
 \[k = k_1 \ XOR \ k_2 = 001_2 \ XOR \ 100_2 \]

- E-cube route:
 \[t = 100_2 \rightarrow 101_2 \rightarrow 001_2 = s \]
Summary

Hypercube

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-to-all broadcast</td>
<td>((t_s + t_w m) \log_2 p)</td>
</tr>
<tr>
<td>All-to-one reduction</td>
<td>((t_s + t_w m) \log_2 p)</td>
</tr>
<tr>
<td>All-reduce</td>
<td>((t_s + t_w m) \log_2 p)</td>
</tr>
<tr>
<td>Prefix sum</td>
<td>((t_s + t_w m) \log_2 p)</td>
</tr>
<tr>
<td>All-to-all broadcast</td>
<td>(t_s \log_2 p + t_w (p - 1)m)</td>
</tr>
<tr>
<td>All-to-all reduction</td>
<td>(t_s \log_2 p + t_w (p - 1)m)</td>
</tr>
<tr>
<td>Scatter</td>
<td>(t_s \log_2 p + t_w (p - 1)m)</td>
</tr>
<tr>
<td>Gather</td>
<td>(t_s \log_2 p + t_w (p - 1)m)</td>
</tr>
<tr>
<td>All-to-all personalized</td>
<td>((t_s + t_w m)(p - 1))</td>
</tr>
</tbody>
</table>
Improved one-to-all broadcast

1. Scatter

2. All-to-all broadcast
Improved one-to-all broadcast

Time analysis

Old algorithm:
- Total time: $(t_s + t_w m) \log_2 p$

New algorithm:
- Scatter: $t_s \log_2 p + t_w (p - 1)(m/p)$
- All-to-all broadcast: $t_s \log_2 p + t_w (p - 1)(m/p)$
- Total time: $2t_s \log_2 p + 2t_w (p - 1)(m/p) \approx 2t_s \log_2 p + 2t_w m$

Effect:
- t_s term: twice as large
- t_w term: reduced by a factor $\approx (\log_2 p)/2$
Improved all-to-one reduction

1. All-to-all reduction

2. Gather
Improved all-to-one reduction

Time analysis

- Analogous to improved one-to-all broadcast
- t_s term: twice as large
- t_w term: reduced by a factor $\approx (\log_2 p)/2$
Improved all-reduce

All-reduce = One-to-all reduction + All-to-one broadcast

1. All-to-all reduction

2. Gather

3. Scatter

4. All-to-all broadcast

...but gather followed by scatter cancel out!
Improved all-reduce

1. All-to-all reduction

2. All-to-all broadcast
Improved all-reduce

Time analysis

- Analogous to improved one-to-all broadcast

- t_s term: twice as large

- t_w term: reduced by a factor $\approx (\log_2 p)/2$